
VYA: Applying YAPI To Video

Version 1.4.0

Kees van Zon

Keywords: YAPI, application modelling, video, re-usability

Abstract: This document introduces VYA, a procedure for video-oriented use
of YAPI, the Y-chart Application Programmer’s Interface developed at Philips
Research Eindhoven for modeling and simulating signal processing applications.
VYA resulted from a cooperation between the developers of YAPI and video al-
gorithm developers at Philips Research Briarcliff. VYA-compliant software mod-
ules are plugable by virtue of standardized interfaces for video and control signals,
while a high level of re-usability is obtained through a carefully chosen application
of YAPI. VYA focuses on communicating rectangular images in applications with
YUV and/or RGB input and/or output.

Contents

1 Introduction 3

2 YAPI 3

3 Specification Level 4

4 Video Signal Types 4

5 Video Communication Data Type 5
5.1 Introduction . 5
5.2 Definitions . 5
5.3 Interfaces . 6
5.4 Conversions . 9

6 Video Processing Data Type 10

7 Image Resolution 10

8 Bit Precision 10

9 Control 13

10 Deadlock 14

11 VYA Systems 14

12 Coding Style 15
12.1 File Names . 15
12.2 Variable Names . 15
12.3 Constant Names . 15
12.4 Port Names . 16
12.5 Fifo Names . 16
12.6 Process and Process Network Names 16
12.7 Comments . 17
12.8 Headers . 17
12.9 Layout . 17
12.10Error Signalling and Diagnostics 17
12.11Miscellaneous . 18

13 Test Bench 19

14 Documentation 19

15 Directory Structure 20

16 Conclusion 22

References 23

Appendix A Compliance Check List 24

2

1 Introduction

This document outlines a set of coding rules for video-oriented use of YAPI, the Y-
chart Application Programmer’s Interface developed at NatLab for modeling and
simulating signal processing applications. These rules, referred to as ”Video YAPI”
or simply VYA, resulted from a cooperation between the developers of YAPI,
whose field of expertise is system design tools, and video algorithm developers
at Philips Research Briarcliff. As such, they meet the needs of video algorithm
designers that wish to express their algorithms in a unified manner, as well as the
needs of system developers wishing to efficiently implement such algorithms using
a Y-chart based design flow. VYA compliant software modules are plugable and
highly re-usable. The former is by virtue of standardized interfaces for video and
control signals; the latter is obtained by a carefully chosen application of YAPI. As
a result, a project that develops VYA modules can feed its output efficiently into
projects that deal for example with:

� efficient hardware and/or software implementation of video algorithms

� the design of new architecture templates for video processing

� functional modeling and analysis of larger video processing systems.

2 YAPI

The purpose of YAPI is to provide a means for constructing high-level, functional
software models (i.e. functional specifications) of signal processing applications in
such a way that they [1]

� are reusable across projects,

� come with a run-time environment for execution on a workstation or PC,

� have a platform independent programmer’s interface, and

� provide input for platform dependent mapping and performance analysis.

YAPI improves system design flows by separating application modeling from other
system design activities such as architecture modeling, mapping, and performance
analysis. It provides a means for structured design and modeling of signal pro-
cessing applications by explicitly exposing parallelism and communication, and it

3

speeds up system design because the platform independent programmer’s interface
enables re-use [1].

YAPI is a C++ library with a set of rules for modeling signal processing applica-
tions as a process network consisting of processes that are interconnected by di-
rected first-in-first-out channels called fifos. Communication is based on the Kahn
Process Network model with blocking reads on theoretically unbounded fifos [2].
In practice, fifos are bounded so that writes can also suspend process execution.
Processes have a private state space which is not accessible by other processes.
They communicate with their environment through input and output ports which
are the formal arguments of processes. Fifos connect output ports to input ports;
they are the actual arguments of processes. Each port is connected to precisely one
fifo. Processes can read from their input ports and write to their output ports. The
read method blocks if the corresponding fifo is empty. The write method blocks if
the corresponding fifo is full, which avoids data loss during communication. Ports
and fifos are typed which means that they can handle data of one type only. The
structure of process networks, i.e., the binding of fifos to ports, is static; it is known
at compile time and does not change at run time [1].

3 Specification Level

VYA defines interfaces for YAPI processes or (possibly nested) process networks
with Y,U,V and/or R,G,B inputs and/or outputs. Any process or process network
that adheres to these interfaces and to the preferred coding style is called a VYA
module. The granularity of a module can range from small (e.g. gamma correc-
tion, look-up table) through medium (e.g. scan rate converter) to large (e.g. video
processing chain). VYA modules can be combined into VYA systems, and they
can be embedded in non-VYA YAPI systems.

4 Video Signal Types

This version of VYA defines interfaces for Y,U,V and R,G,B processing only. As
such, the functional categories that it covers are source decoding (output only), im-
age enhancement and display adaptation. In practice, some modules will process a
single video signal only, e.g. Y, and others will process multiple video signals, e.g.
U,V or R,G,B. Furthermore, some ports will be dedicated to a specific signal type,
e.g. Y, whereas others ports may allow multiple signal types, e.g. Y,U,V,R,G,B.
VYA therefore allows modules to have any number and type of video signals at
their input ports and at their output ports. Some typical examples are shown in

4

Table 1.

input output example

(CVBS) Y,U,V NTSC decoder
(TS) Y,U,V MPEG2 decoder

Y Y LTI
U,V U,V CTI

Y,U,V Y,U,V scan rate conversion
Y,U,V R,G,B matrix
R,G,B R,G,B contrast

C C
generic spatial scaler

(C = Y or U or V or R or G or B)

Table 1: module input/output examples

5 Video Communication Data Type

5.1 Introduction

Video signals are communicated between processes by means of tokens that travel
over fifo channels. Modules are seamlessly plugable when there is a match between
the number of I/O ports, the signal types (e.g. Y,U,V) communicated through these
ports, and the data types of the tokens that make up each signal. The choice of
the latter, which is referred to as the communication data type, determines the ex-
ecution speed, the memory usage, and the re-usability of YAPI code [1],[3]. Our
primary goal is maximum re-usability, which requires that the application defines
exactly what is communicated, but not how: it is the mapping of a specification to
an implementation that decides how the communication is done most efficiently.
This goal is supported by communicating the smallest possible token size, which,
for video processing, is a pixel. Communicating pixels allows the application pro-
grammer to choose his processing to be on a pixel, line, field or frame basis, simply
by reading and writing vectors of pixels. YAPI supports efficient vector read/write
methods for this purpose [1].

5.2 Definitions

All VYA definitions reside in a file called vya.h; they are step by step introduced
below. To begin with, video pixels are of type VYAsigned16bit:

5

typedef signed16bit VYApixel;

The implementation of type VYAsigned16bit is a design decision which is inde-
pendent of VYA and must be specified in a separate file called architecture.h. For
example:

typedef short VYAsigned16bit;

In computations on type VYApixel, VYA assumes signed data ranging from -215
to 215-1. In all implementations, type VYAsigned16bit must therefore contain at
least 16 bits. See also section 8. Vectors of pixels either represent one-dimensional
arrays called lines or two-dimensional, rectangular arrays called images. The num-
ber of pixels in a line is indicated by VYAlineLength. As it may vary for each line
that is communicated, VYAlineLength must be supplied for each line.

typedef unsigned int VYAlineLength;

The size of an image is defined by VYAimageWidth which indicates the (fixed)
number of pixels per line, and VYAimageHeight which is the number of lines per
image. Both must be supplied once for each image. Finally, an image can be either
a top field, a bottom field, or a frame. This is indicated by VYAimageType, to be
supplied per image when needed by the application.

typedef unsigned int VYAimageWidth;
typedef unsigned int VYAimageHeight;
enum VYAimageType {VYA_TOP_FIELD,VYA_BOTTOM_FIELD,VYA_FRAME};

5.3 Interfaces

The re-usability of any YAPI process or process network improves when it commu-
nicates only information that is required for proper operation. A gamma correction
process for instance operates on individual pixels and does not need the notion
of lines and images; it should therefore not receive any VYAlineLength, VYAim-
ageWidth, VYAimageHeight or VYAimageType tokens. Similarly, a horizontal
filter does not need the notion of images, etc. VYA therefore distinguishes be-
tween pixel-based, line-based and image-based input and/or output interfaces, as
shown in Figure 1 - Figure 3.

Notes:

6

VYApixel Yin

VYApixel Uin
VYApixel Vin

VYApixel Yin
VYApixel Uin
VYApixel Vin

VYApixel Rin
VYApixel Gin
VYApixel Bin

VYApixel Cin

VYApixel Yout

VYApixel Uout
VYApixel Vout

VYApixel Yout
VYApixel Uout
VYApixel Vout

VYApixel Rout
VYApixel Gout
VYApixel Bout

VYApixel Cout

Input side Output side

Figure 1: VYA interfaces for modules with pixel-based input and/or output

VYApixel Yin
VYAlineLength lineLenIn

VYApixel Uin
VYApixel Vin

VYApixel Rin
VYApixel Gin

VYApixel Yout

VYApixel Uout
VYApixel Vout

VYApixel Rout
VYApixel Gout

Input side Output side

VYApixel Yin
VYApixel Uin
VYApixel Vin

VYApixel Yin
VYApixel Uin
VYApixel Vin

VYApixel Cin VYApixel Cout
VYAlineLength lineLenIn

VYAlineLength lineLenIn

VYAlineLength YlineLenIn
VYAlineLength UVlineLenIn

VYAlineLength lineLenIn
VYApixel Bin VYApixel Bout

VYAlineLength lineLenOut

VYAlineLength lineLenOut

VYAlineLength YlineLenOut
VYAlineLength UVlineLenOut

VYAlineLength lineLenOut

VYAlineLength lineLenOut

Figure 2: VYA interfaces for modules with line-based input and/or output

7

VYApixel Yin
VYAimageWidth imgWidthIn

VYApixel Rin
VYApixel Gin

VYApixel Yout

VYApixel Rout
VYApixel Gout

Input side Output side

VYApixel Yin
VYApixel Uin
VYApixel Vin

VYApixel Yin
VYApixel Uin
VYApixel Vin

VYApixel Cin VYApixel Cout

VYApixel Bin VYApixel Bout

VYAimageHeight imgHeightIn
VYAimageType imgTypeIn

VYAimageWidth imgWidthOut
VYAimageHeight imgHeightOut
VYAimageType imgTypeOut

VYApixel Uin
VYApixel Vin

VYApixel Uin
VYApixel Vin

VYAimageWidth imgWidthIn
VYAimageHeight imgHeightIn

VYAimageType imgTypeIn

VYAimageWidth imgWidthOut
VYAimageHeight imgHeightOut
VYAimageType imgTypeOut

VYAimageWidth YimgWidthIn
VYAimageHeight YimgHeightIn

VYAimageType imgTypeIn

VYAimageWidth UVimgWidthIn
VYAimageHeight UVimgHeightIn

VYAimageWidth YimgWidthOut
VYAimageHeight YimgHeightOut
VYAimageWidth UVimgWidthOut
VYAimageHeight UVimgHeightOut
VYAimageType imgTypeOut

VYAimageWidth imgWidthIn
VYAimageHeight imgHeightIn

VYAimageType imgTypeIn

VYAimageWidth imgWidthOut
VYAimageHeight imgHeightOut
VYAimageType imgTypeOut

VYAimageWidth imgWidthIn
VYAimageHeight imgHeightIn

VYAimageType imgTypeIn

VYAimageWidth imgWidthOut
VYAimageHeight imgHeightOut
VYAimageType imgTypeOut

Figure 3: VYA interfaces for modules with image-based input and/or output

8

� ”C” stands for ”Component” and indicates that the interface can be used for
any signal type.

� For line-based modules with both U and V inputs or outputs, it is assumed
that these signals have the same line length.

� For image-based modules with both U and V inputs or outputs, it is assumed
that these signals have the same image size and image type.

� For image-based modules with Y, U and V inputs or outputs, it is assumed
that all three signals are of the same image type; Y and U,V may be of
different size, however.

� For image-based modules with R, G and B inputs or outputs, it is assumed
that all three signals are of the same size and image type.

� Output interfaces for line length, image size and image type should only be
provided for those parameters that can be modified by the module.

� Modules may have additional interfaces, e.g., for control purposes.

5.4 Conversions

A system composed of VYA modules needs converters when it contains both mod-
ules with line-based and modules with image-based interfaces. These converters
are shown in Figure‘4 below. Module ”i2l” converts VYAimageWidth to VYAline-
Length by creating VYAimageHeight output tokens for each input token it receives.
Likewise, module ”l2i” converts VYAlineLength to VYAimageWidth by reading
VYAimageHeight input tokens and producing a single output token.

VYAimageWidth imgWin
VYAimageHeight imgHin

VYAlineLength lineLouti2l

VYAlineLength lineLin
VYAimageHeight imgHin

VYAimageWidth imgWoutl2i

Figure 4: VYA modules for converting between line-based and image-based inter-
faces.

Figure 5 shows an example application of ”i2l”. Note that it reveals a need for
multicasting, i.e., connecting multiple fifos to a single output port. This will be
supported by later YAPI versions.

9

Frontend

Yin

imgWin

imgHin

imgTin

2D scaler

i2l
imgWout

imgHout
lineLout

Yscaled

Backend

Yout

FIR

Figure 5: Example application of image-to-line conversion.

6 Video Processing Data Type

The video processing data type refers to the data entity on which a module operates
internally. Typically, this is a pixel, a line, a field, or a frame, but it can for instance
also be a vertical stripe or a two-dimensional block. VYA poses no restrictions
on the video processing data type; it only requires that the external interfaces of a
module adhere to the rules outlined in the previous section.

7 Image Resolution

Given applications like dual window and PiP, the introduction of the ATSC stan-
dard with its multitude of new image sizes, and the emergence of flat panel displays
with various fixed resolutions, VYA modules should preferably be capable of han-
dling any image size. When modules receiving lines or images have restrictions in
the sizes they can handle, they must call function VYAcheckSize(), which checks
if the module can actually process the line or image size it receives and terminates
execution with a printed error message if it can’t. VYAcheckSize() also manages
the input buffers and is defined in vya.h,cc as a member function of class VYApro-
cess.

8 Bit Precision

The optimum choice for the bit precision of the video signals of a video process-
ing algorithm may differ for each particular implementation of that algorithm. The
re-usability of an application model therefore improves when it allows a range of
bit precisions. In support of this, VYA requires that the bit precision of the video
input and the video output signals of each model is parametrized. An adverse im-
pact on the simulation speed is prevented by adopting a very simple mechanism for
this purpose: type VYApixel is assumed to range from �

�����
to

�������	�
, while the

10

effective range of the video input and/or output pixels is defined by parameters. To
reflect that the bit precision of an implementation is fixed, the bit precision parame-
ters are passed as arguments in the constructor of a process (network), which allows
them to be programmable yet forces them to be constant during each instantiation.
For example:

class myVYAprocess : public VYAprocess
{
public:

// constructor
myVYAprocess(
Id n,
VYAbitPrecision inPrec,
VYAbitPrecision outPrec,
...

};

Class VYAbitPrecision is defined in vya.h,cc as follows:

class VYAbitPrecision
{
public:

// constructors
VYAbitPrecision();
VYAbitPrecision(VYAbitPrecision&);
VYAbitPrecision(unsigned int, bool);
// member variables
unsigned int bits;
bool signbit;

};

Table 2 explains how the bit precision parameters determine the pixel range. These
parameters must be supplied for input as well as output video interfaces. When
a module has multiple video input and/or output interfaces, the programmer can
choose to provide separate parameters for each interface or to combine them into
a single parameter - e.g., UbitPrecIn and VbitPrecIn vs. UVbitPrecIn. To pre-
vent incorrect behavior caused by illegal parameter values (e.g. signbit = true for
a Y interface), modules must check parameter correctness by calling function VY-
AcheckPrecision which is a member function of VYAprocess provided in vya.h,cc.

The internal precision of an algorithm must be sufficient to handle the maximum
input pixel range indicated in Table 2. Generally, it will suffice to use a 32-bit
data type like int for intermediate results. Final results must be normalized to
the required output precision; for this purpose, vya.h provides inline functions for
rounding, shifting, clipping etc.

11

signal type U,V Y,R,G,B

signbit true false

pixel range � � bits ��������� � bits ��� �
	 � ����� � bits ���
bits range VYA MIN BITS...VYA MAX BITS U VYA MIN BITS...VYA MAX BITS S

VYA MIN BITS range 1...VYA MAX BITS U 1...VYA MAX BITS S

VYA MAX BITS U range VYA MIN BITS...16
VYA MAX BITS S range VYA MIN BITS...15

Table 2: Definition of effective bit precision. All constants reside in vya.h

Because mapping an algorithm to an efficient implementation is facilitated by un-
derstanding its internals, the internal precision of a VYA module is preferably in-
dicated by means of comments. In the example shown below, a filter with gain 29
is applied to a luminance line. By definition, the overall gain of a module equals
� outPrec.bits-inPrec.bits , which implies that the filter output must be normalized
by dividing it by

�� � outPrec.bits+inPrec.bits using round and shift operations. Lu-
minance data being unsigned, the result must finally be clipped between 0 and
2outPrec.bits-1 to ensure the correct output range. Comments indicate the bit pre-
cision of the input data and of the result of every processing step. The format used
is s.n.m, where, s indicates the sign bit (0: positive; 1: negative; s: positive or
negative), n indicates unused bits, and m indicates magnitude bits. Besides 16 bits
for type VYApixel, this example assumes 32 bits for type int.

void myVYAprocess::processLine()
{

int min, max, sf, data;
unsigned int pix;

min = 0;
max = (1 << outPrec.bits) - 1;
sf = inPrec.bits - outPrec.bits; // scale factor

for (pix=0; pix<imgWidth; pix++) {
// read pixel
data = (int) Yin[pix]; // {0.31-inBits.inBits}

// insert processing here

// round, normalize and clip
data = RNORM(data, sf); // {0.31-outBits.outBits}
data = CLIP(data, min, max); // {0.31-outBits.outBits}

// write pixel
Yout[pix] = (VYApixel) data; // {0.15-outBits.outBits}

}
}

12

9 Control

Video processing algorithms frequently offer - or require - some form of external
control, which is for our purpose simply defined as being any kind of non-video
data. VYA distinguishes between four types of control parameters:

� constants

– defined in the code at compile time

– cannot change unless the code is modified and re-compiled

– examples: VYA MIN BITS, VYA MAX BITS S, VYA MAX BITS U

� parameters

– defined as arguments in the constructor of a process (network) at in-
stantiation time

– cannot change during an instantiation of a process (network)

– example: bitPrec

� deterministic tokens

– defined through input ports of a process (network) at run time

– used to control the data flow between modules, e.g. the amount of data
consumed and/or produced, or the routing of data

– may change during an instantiation of a process (network), but must be
synchronized with tokens that control modules with which the module
in question interacts; improper synchronization would lead to incorrect
system behavior

– example: lineLen, imgWidth, imgHeight

� non-deterministic tokens

– defined through input ports of a process (network) at run time

– used to control the data contents rather than the data flow

– may change at any moment during an instantiation of a process (net-
work) without affecting proper behavior of the module

– reading is conditioned by YAPI’s select function [1]

– example: filterCoefficients

13

10 Deadlock

VYA does not specify the length of the fifos that connect modules. In [3] it was
shown that bounded fifos with default sizes may lead to deadlock situations caused
by a blocking write action. As of v0.5, YAPI’s run-time environment automatically
increases fifo sizes at run-time when this situation is detected. As a result, deadlock
now means that all processes are blocked by a read action. The upper limit on the
total size of the growing fifos depends on the amount of memory available in the
system.

11 VYA Systems

Creating a video processing system from VYA modules requires frontend and
backend modules which produce and consume video data, respectively. The video
data itself may be stored in files of various formats or come from a real-time source;
each option requires a specific frontend/backend. Video processing modules should
always be independent of any frontend and backend, i.e., no information specific to
a particular frontend/backend should be communicated to these modules. The fron-
tend and backend are controlled by a subsystem consisting of one or several control
processes. This control subsystem may for instance read the system configuration
from initialization files and send optional, module-specific control parameters to
the video processing modules at the proper data rate. An example is shown in
Figure 6, in which dataX symbolizes video channels, sizeX indicates channels for
communicating VYAlineLength, etc., and inSeqInfo and outSeqInfo are channels
for communicating information about the input and output video sequences. The
control subsystem receives an imgSync token for synchronizing control parameters
with the video. As indicated by the arrows, the flow of control parameters may be
bidirectional.

Frontend
data1

size1
Processing
Module 1

Backend
data2

size2

dataN

sizeN
Processing
Module N

dataN+1

sizeN+1

 Control
Subsystem

inSeqInfo outSeqInfo

cntrl1 cntrlNcntrl0
imgSync

video video

configuration

Figure 6: VYA system with video chain and control subsystem.
Dashed lines are optional.

14

12 Coding Style

A uniform look and feel improves the re-usability of code, and a well-defined cod-
ing style helps achieve this. VYA therefore adopts the coding style set forth in [1]
with some additions as outlined below. Regarding the naming conventions: names
of files, variables, types, etc., start with lower case letters. Multiple words within a
name are separated by upper case letters; e.g. nrPixelsPerImage. Exceptions may
make sense, e.g. YinData. All processes with video i/o must be derived from class
VYAprocess which is provided in vya.h,cc.

12.1 File Names

Following [1], every process and every process network must reside in a separate
file. The same name is used for the process (network) and the corresponding .cc
and .h files, although the file names use lower case only:

� files myvyaprocess.cc,h define process myVYAprocess

� files myvyaprocessnetwork.cc,h define process network myVYAprocessNet-
work

12.2 Variable Names

The choice of variable names greatly impacts the readability of code. The mean-
ing of c = a * b; is much less obvious than the meaning of nrPixelsPerImage =
imgWidth * imgHeight; VYA therefore requires the use of clear and descriptive
names for variables, ports, etc. When long names are abbreviated, the meaning of
the abbreviation must be explained with a comment.

12.3 Constant Names

Names of constants are in capitals, e.g. PI. Multiple words within a name are
separated by underscores, e.g. TWO PI.

15

port type base name

Video in Yin, Uin, Vin, Rin, Gin, Bin, Cin
Video out Yout, Uout, Vout, Rout, Gout, Bout, Cout
Line length in lineLenIn, YlineLenIn, UVlineLenIn
Line length out lineLenOut, YlineLenOut, UVlineLenOut
Image width in imgWidthIn, YimgWidthIn, UVimgWidthIn
Image width out imgWidthOut, YimgWidthOut, UVimgWidthOut
Image height in imgHeightIn, YimgHeightIn, UVimgHeightIn
Image height out imgHeightOut, YimgHeightOut, UVimgHeightOut
Image type in imgTypeIn
Image type out imgTypeOut

Table 3: Base names of standard I/O ports

parameter name

port (formal) baseNameP
fifo (actual) baseNameF
variable baseName

Table 4: Parameter names

12.4 Port Names

Port names are standardized as shown in Figure 1 - Figure 3. From these so-
called ”base names” which are repeated in the table below, the names of the actual
parameters, formal parameters and variables of a process or process network are
derived. Table 4 shows this for a port called baseName. Variables may be given
more appropriate names where applicable.

12.5 Fifo Names

The fifos of a process network should indicate the type of data traveling through
it. VYA’s base names for standard fifos are shown below. When there is more than
one fifo of the same type, the base names are followed by a number.

12.6 Process and Process Network Names

Processes and process networks must be given descriptive names.

16

fifo type base name

Video Y, U, V, R, G, B, C
Line length lineL, YlineL, UVlineL
Image width imgW, YimgW, UVimgW
Image height imgH, YimgH, YimgW
Image type imgT

Table 5: Base names of standard fifos

12.7 Comments

Statements or groups of statements that are not completely obvious should be ex-
plained by means of comments. As outlined above, this includes the bit precision
of mathematical operations.

12.8 Headers

All files representing VYA processes and process networks should be preceded by
the header shown below. Fields that don’t apply to a particular file are designated
”n/a”. The headers may be automatically generated by the version control system
so that they are always up to date.

12.9 Layout

The layout of a program significantly impacts its readability. Brackets delimiting
flow statements (for, while, if, ...) should be properly aligned. Comments should
follow or be vertically aligned with the statement(s) they refer to. Spaces should
be used instead of tabs to prevent the layout from being messed up in editors with
different tab settings.

12.10 Error Signalling and Diagnostics

The number of print statements in VYA code should be kept to a minimum. Print
statements inserted for debugging purposes during module development should be
removed prior to acceptance into a library. Two techniques are used for signalling
errors caused by improper application of a VYA module in a larger system. Errors
in low-rate control parameters are signalled with unconditional print statements,

17

e.g. as in the VYAcheckSize and VYAcheckPrecicion functions. Errors in pixel-
rate video data are optionally checked with the assert function, for instance

assert(!((Yin[i] < 0) || (Yin[i] > Ymax)));

To preserve simulation speed, assert should by default be turned off by defin-
ing compiler directive -DNDEBUG in the makefile. For diagnostic purposes, the
makefile can also enable a verbose mode through optional compiler directive -
DVERBOSE, to be used for instance as follows:

#ifdef VERBOSE
cout << fullName()

<< ": input line length = "
<< lineLengthIn
<< endl;

#endif

The fullName function should always be included to identify the issuing process.

12.11 Miscellaneous

Additional coding rules for writing re-usable DSP algorithms are given in [4]. They
include:

� Static member variables may not be used, as they are not duplicated for
multiple instances and hence cause dangerous side effects.

� Pointers may not be communicated over fifos, as that assumes a shared mem-
ory architecture.

� No hard paths to include files may be used, as that limits portability. All
paths should be relative to the directory where the module is located.

� Type casts are explicit operations and should preferably be explicit.

� Floating point variables should be used sparingly, as both hardware and soft-
ware implementations are most likely to use fixed point.

� File I/O is only allowed by frontend, backend and control modules, except
for print statements in the verbose mode which any module may have.

18

13 Test Bench

To assist users of a VYA module in understanding how it is to be applied, a simple
example is to be provided in the form of a process network containing a frontend
module, a backend module, a control module, and the VYA module in question.
The frontend and backend should be links to standard VYA modules, e.g., for I/O
of PFSPD files. This test bench should be accompanied by the makefile, initial-
ization files where applicable, video test sequences, and the expected response to
these sequences to allow module behavior to be verified. Preferably, a typical and
an extreme sequence are provided for illustrating both normal and exceptional be-
havior. Test sequences should be as short as possible to minimize storage space
and transmission bandwidth.

14 Documentation

All VYA modules should be accompanied by a document that contains at least the
following, as this is important for their re-usability:

1. Introduction

� brief outline of function; mention of existing implementations, e.g., IC
type number

2. Feature list

� overview list of all features (data book style)

3. Algorithm

� brief description of algorithm; use references for more detail

4. System overview

� partitioning of module into processes
� fifo names (input, output, internal)
� indication of memories

5. Performance

� image quality
� compute resources (execution speed, memory usage)

6. Interface

19

� video I/O: data type, port names, token size, data rate, image sizes
� control: data rate, type (user control vs. system control)

7. Future work

� suggestions and recommendations, e.g., for algorithmic improvements

8. References

Appendix A. code structure

� list of directories and files

Appendix B. example

� brief description of the example system supplied with the module, in-
cluding block diagram and test sequence(s)

15 Directory Structure

In support of re-use and maintainability, a VYA module’s code files and accom-
panying documents are to be stored in a standard directory tree named after the
module (e.g. mymodule), as indicated in Table 6.

The (partial) directory tree of a VYA library with version control could for in-
stance look like follows (with ”$(HOME)” the directory in which the modules are
installed):

$(HOME)/Modules/vya-0.2/
$(HOME)/Modules/vya-0.3/
$(HOME)/Modules/vya-0.3/cvbs decoding/
$(HOME)/Modules/vya-0.3/front backends/
$(HOME)/Modules/vya-0.3/front backends/sgi divo/
$(HOME)/Modules/vya-0.3/front backends/sgi divo/v1/(as in Table 6)
$(HOME)/Modules/vya-0.3/front backends/vya pfspd/
$(HOME)/Modules/vya-0.3/front backends/vya pfspd/v1/(as in Table 6)
$(HOME)/Modules/vya-0.3/mpeg decoding/
$(HOME)/Modules/vya-0.3/noise reduction/
$(HOME)/Modules/vya-0.3/picture control/
$(HOME)/Modules/vya-0.3/scanrate conversion/
$(HOME)/Modules/vya-0.3/sharpness enhancement/
$(HOME)/Modules/vya-0.3/spatial scaling/

20

mymodule/ subdirectory contents remarks

doc/ module documentation, refer-
enced docs (optional)

example/ myvyamoduleexample.cc,
myvyamoduleexample.h,
myvyamoduleexample.main.cc,
makefile, video test sequences
and responses (opt.), initializa-
tion files (opt.)

- video sequences may
be referenced through
links - frontend and
backends referenced in
makefile - makefile makes
myvyamoduleexample

include/ myvyaprocess1.h, myvyapro-
cess2.h, ... myvyamodule.h

myvyamodule is the
module’s process network
(opt.)

lib/ libmyvyamodule.a subdirectory per O.S.
Makefile makes lib/ and obj/
obj/ myvyaprocess1.o, myvyapro-

cess2.o, ... myvyamodule.o
subdirectory per O.S.

readme.txt file-header-like module
info plus installation
instructions

src/ myprocess1.cc, myprocess2.cc,
... myvyamodule.cc

hierarchical for nested
process networks

Table 6: VYA directory tree (in alphabetical order)

21

16 Conclusion

We have presented VYA, a procedure for applying YAPI to video which can signif-
icantly enhance the re-usability of video processing algorithms. VYA is limited to
applications with YUV and/or RGB input and/or output. Other signal types can be
added in future versions. Appendix A provides a compliance check list; Appendix
B provides a detailed example.

Acknowledgments

The author is grateful to Erwin de Kock, Gerben Essink, Karl Wittig, Nehal Dant-
wala, Ralph Braspenning, Walid Ali, Wim Smits and Yibin Yang for their contri-
butions to the VYA standard, and to Rob Vogelaar and Dave Bryan for reviewing
this document.

22

References

[1] E. de Kock, G. Essink, Y-chart Application Programmer’s Interface,
Philips Research Eindhoven Technical Note 008/99, March 1999.

[2] G. Kahn, The Semantics of a Simple Language for Parallel Programming,
Proceedings of IFIP Congress 74, North-Holland Publishing Co., 1974.

[3] K. van Zon, VYA: A Proposal For Applying YAPI To Video - A Discus-
sion Document, Philips Research Briarcliff DTV/UTV Report 004, v.02,
August 1999.

[4] K. van Zon, Writing Re-usable DSP Algorithms, Philips Research Briar-
cliff Technical Note 2000-07, January 2000.

23

Appendix A Compliance Check List

� video input and/or output signals are a subset of Y,U,V and R,G,B

� video communication data type is VYApixel

� pixel-based modules receive/produce no size information

� line-based modules receive/produce line length

� image-based modules receive/produce image size and image type (opt.)

� line length, image size and image type outputs only provided when modified
by module

� input line length or image size is parameterized and checked by checkSize

� input and output bit precision is parameterized and checked by checkPreci-
sion

� internal bit precision can handle 16-bit input range and is indicated by com-
ments

� video output signals are properly rounded, normalized and clipped

� no frontend/backend specific information is passed to/from the module

� names of files, processes, variables, ports and fifo’s are clear and descriptive

� names of ports and fifos follow Table3 - Table 5 where applicable

� code is clarified by comments as needed

� all files contain up-to-date headers

� the code layout is neat and contains no tabs

� print statements are only for signalling errors or for diagnostic purposes

� signalling of errors in low-rate control parameters uses unconditional print
statements

� signalling of errors in pixel-rate video data is through the assert function

� signalling for diagnostic purposes is conditional to compiler directive VER-
BOSE

� assert is default turned off by defining compiler directive -DNDEBUG in the
makefile

� no static variables are used

24

� no pointers are communicated over fifos

� code files contain no hard paths to other files

� type casts are explicit

� floating point variables are used only when needed

� modules other than frontend, backend and control perform no file I/O

� a test bench with frontend, backend and control modules is provided along
with a makefile

� video test sequences and their responses are provided

� a document with the framework outlined in Section 14 is provided

� all files are stored in a directory tree that follows Section 15

25

