
Y-chart Application
Programmer’s Interface

The YAPI Programmer’s and Reference Guide

Version 2.1.0

Erwin de Kock and Gerben Essink

Contents

1 Introduction 4
1.1 System Level Design . 5
1.2 Application Modeling . 7
1.3 Example . 9
1.4 Related Work . 10
1.5 Model of Computation . 12
1.6 Mapping . 14

2 Application Programmer’s Guide 16
2.1 Getting Started . 17

2.1.1 Introduction . 17
2.1.2 Producer-Consumer . 17
2.1.3 The Main Program . 17
2.1.4 The Process Network . 18
2.1.5 The Producer . 20
2.1.6 The Consumer . 22

2.2 Carrying On . 24
2.2.1 Hierarchical Process Networks 24
2.2.2 Communication . 27
2.2.3 Fifo Sizes . 32
2.2.4 Multicast . 33

2.3 Run-Time Environment . 35
2.3.1 Deadlock . 35
2.3.2 Termination . 39
2.3.3 Stack Size and Stack Overflow 39

2.4 Workload Analysis . 41
2.5 Visualization of Process Networks 43

2.5.1 What is Dotty? . 43
2.5.2 How to Use Dotty . 43
2.5.3 Options . 45

2.6 Programming Guidelines . 48
2.6.1 Coding Style . 48
2.6.2 Design Rules . 53

2

2.7 Reference . 56
2.7.1 Function read . 56
2.7.2 Function write . 56
2.7.3 Function select . 57
2.7.4 Class Id . 58
2.7.5 Class In<T> . 59
2.7.6 Class Out<T> . 60
2.7.7 Class Fifo<T> . 60
2.7.8 Class InPort<T> . 61
2.7.9 Class OutPort<T> . 62
2.7.10 Class Process . 63
2.7.11 Class ProcessNetwork 64
2.7.12 Class RTE . 65
2.7.13 Class SelectList . 66
2.7.14 Function start . 66
2.7.15 Function printWorkload 67
2.7.16 Function printDotty 67

2.8 How to Compile Your Application 68

References 69
chapter

3

Preface

Aim

YAPI is an acronym for Y-chart Application Programmer’s Interface. The goal
of YAPI is to enable reuse of stream processing applications in two ways namely
composability and portability. Composability refers to the use of existing stream
processing applications in the development of new stream processing applications.
Portability refers to the use of stream processing applications on different architec-
tures. To this end, YAPI separates the concerns of the application designer, who
specifies the functionality of the system, and the system designer, who implements
the functionality.

Intended Audience

This document is primarily intended for designers of signal processing applications
serving as a programmer’s manual. Although YAPI itself is programmed using the
C++ language, application programmers require only some basic knowledge of
C++ in order to program the interfaces of the processes and the structures of the
process networks. Knowledge of C suffices to describe the functionalities of the
processes. For an introduction to C++ we refer to [19]. We provide an efficient
implementation of YAPI in the form of a C++ run-time library to execute the ap-
plications on a workstation. Subsequently, the applications are used by the system
designer as input for mapping and performance analysis in the design of complex
stream processing systems.

It is our aim to offer YAPI to colleagues in Philips with expertise in stream pro-
cessing applications such that they can model their applications in a structured way.
These applications can serve as input for our methodologies and tools. YAPI has
been been applied in several research projects among others COdesign Simulation
and sYnthesis (COSY), PROgrammable MultiMedia PlaTforms II (PROMMPT-

1

II), SCalable BAseband architecture for 3-G terminals (Scuba), Space Computer
Architecture 4 Killer Experience (SpaceCAKE), Video Chain Optimization (VCO),
Scalable Video Algorithms (SVA), New Algorithms for Video Enhancement, and
MPEG coding and Processing for Storage (MEPS). Outside research YAPI is being
applied among others at the System Lab Eindhoven in the projects Function and
Architecture modeling Kit and Interface Rules (FAKIR), and Universal Display
Processor (UDP).

Acknowledgements

The development of YAPI has been initiated by the members of the former hard-
ware software codesign cluster of the group Niessen in cooperation with the for-
mer members of the processor oriented architectures cluster of the group Lippmann
working in the COSY project. The authors gratefully acknowledge the contribu-
tions to YAPI from Jean-Yves Brunel, Arjan Kenter, Wido Kruijtzer, Paul Lieverse,
Wim Smits, Kees Vissers, and Pieter van der Wolf.

YAPI Release 0.5 has been developed in the cluster Embedded Systems Design
Technology of the group Embedded Systems Architectures on Silicon. The YAPI
development is part of an effort to develop methodologies and tools to support the
design of stream processing systems. Currently, YAPI is being developed further in
cooperation with Eric Kamps and Martin Klompstra from Electronic Design and
Tools Synthesis who will distribute this release as YAPI ED&T Release 1.0 and
any further releases.

Outline

The outline of the document is as follows.

Chapter 1 describes the basic concepts of YAPI and the typical design flow in
which it is applied. Furthermore it describes the model of computation and related
work in this area. Since this chapter introduces the terminology for the rest of this
document we suggest that you read this chapter.

Chapter 2 is the application designer’s guide. This chapter should be read by appli-
cation designers who wish to write or understand YAPI applications. The outline
of this chapter is as follows.

Section 2.1 is a tutorial in which the programming primitives are introduced

2

step by step by following the design of a simple application. This section is
intended for newbies in YAPI application programming.

Section 2.2 describes all the details you need to know when you write com-
plex application programs with YAPI. This section is intended for the more
experienced users.

Section 2.3 describes a run-time environment that you can use to execute
YAPI applications.

Section 2.4 explains how you can print computation and communication
statistics that have been measured during the execution of an application
in the run-time environment.

Section 2.5 describes how you can visualize the structure of process net-
works.

Section 2.6 describes programming guidelines containing the preferred cod-
ing style and some design rules. The coding style aims at a uniform lay-
out for all application programs such that they are easier to understand and
maintain. The design rules aim to improve the reusability of application
programs.

Section 2.7 is the YAPI reference for application designers. It describes the
public interface of the YAPI C++ classes that can be used in YAPI applica-
tions.

Section 2.8 explains how you can compile your applications.

Chapter ?? describes the installation procedure for the YAPI run-time library.

3

Chapter 1

Introduction

4

1.1 System Level Design

Modern stream processing systems such as digital televisions, set-top boxes, and
mobile devices are multi-functional systems that support multiple standards. For
example, consider a digital TV set which receives an MPEG transport stream via
digital video broadcast. In this TV set the MPEG transport stream is demulti-
plexed into a number of MPEG video streams, and these MPEG video streams are
decoded, scaled, and merged for display. Via a remote control unit a user can select
the channels to be displayed, including the size and position of the video windows.

CPU

ROM RAM

FU FU

Cache

Buffer

B
uffer

Buffer

I/O

Bus

Figure 1.1: Embedded System Architecture

Now assume that a system designer is facing the challenge to implement the func-
tionality in an embedded system. In embedded systems the user-interface function-
ality is typically handled in software because the system should have the flexibil-
ity to deal with rapidly changing functional specifications. For other functions a
software implementation is essential to be able to deal with multiple standards or
with multiple languages in different countries, for example. The embedded system
shown in Figure 1.1 has one CPU on which the software tasks run, for instance, to
handle the events from the remote control. For the video processing functions like
MPEG decoding and video scaling, a software implementation may be inappropri-
ate because of the high data rates that are involved. The performance requirements
and the constraints on silicon area and power consumption require that significant
parts of the system are implemented in dedicated hardware blocks that run in paral-
lel with the CPU. As a consequence, the system has a heterogeneous architecture,
i.e., it consists of programmable and dedicated components. Besides the processors
the system also contains other elements. A ROM may contain program code for the
software tasks that run on the CPU. RAM, caches and buffers provide storage for
temporary data, and a bus provides resources for inter-processor communication.

In our view the design of these heterogeneous multi-processor architectures should
follow a general scheme, visualized by the Y-shape in Figure 1.2, hence, the name

5

Application
Modeling

Architecture
Modeling

Mapping

Performance
Analysis

Function Resources

Implementation

Figure 1.2: The Y-chart: a general scheme for heterogeneous system design.

Y-chart [18] [1].

In the Y-chart we distinguish between four activities. The first activity is Applica-
tion Modeling. The purpose of this activity is to capture a functional specification
of the system in the form of a set of benchmark applications. The application mod-
eling is done by a person we refer to as application designer. The second activity in
the Y-chart is Architecture Modeling. The purpose of this activity is to model the
resources that are available in the system. In embedded systems these resources
typically are processors, operating systems, buses and memories. Another impor-
tant resource is time. In the third activity, the Mapping, the function is mapped
onto the resources of the architecture. The result of the mapping is an implemen-
tation of the system which can be used as input for the fouth activity, Performance
Analysis.

Typically, a system designer studies the set of benchmark applications, makes
some initial calculations and proposes an architecture. Architectures are evaluated
quantitatively by means of performance analysis. To this end, each application is
mapped onto the architecture and the performance of each application-architecture-
mapping combination is evaluated. The resulting performance numbers may in-
spire the architecture designer to improve the implementation via another mapping,
or by choosing other resources in the architecture. He may also decide to restruc-
ture the applications, for instance if the performance requirements cannot be met
with the given resources. The system designer actions are denoted by the light
bulbs in Figure 1.2.

6

1.2 Application Modeling

With YAPI we focus on design technology for capturing the functional specifica-
tions of signal processing applications. The design technology for capturing the
functional specifications of signal processing applications must satisfy a diverse
set of requirements. The design technology must provide support for

� composing applications into larger applications to enable modular construc-
tion and reuse,

� importing legacy code that is available in the form of C code,

� executing applications to validate the functionality of the system by process-
ing real data sets,

� measuring computation and communication requirements related to the pro-
cessing of a data set to determine the workload imposed on target architec-
tures, and

� explicit expression of communication and parallelism to enable the mapping
of applications onto target architectures in order to provide a link to archi-
tecture design technologies.

To meet the above-mentioned requirements we developed YAPI as a C++ library
with a set of rules which can be used to model stream processing applications as
a process network. The model of computation of YAPI is based on Kahn Process
Networks. Such a network consists of concurrent processes that communicate via
unbounded fifos. In Kahn Process Networks (KPN) parallelism and communica-
tion are explicitly modeled, which is essential for the mapping onto multi-processor
systems. Another property of KPN is that an application designer can combine
processes into networks without specifying their order of execution. This property
stimulates the modular construction and reuse of applications (functional IP), since
it is easy to compose new applications using existing ones.

An example process network is shown in Figure 1.3. This process network repre-
sents the stream processing functionality of the digital TV set introduced in Sec-
tion 1.1. A process network consists of concurrent processes that are intercon-
nected by directed first-in-first-out channels which are called fifos. In Figure 1.3
the processes are represented by circles. Each process has a private state space
which is not accessible by other processes. The processes have input and output
ports through which they communicate with their environment. Each port is con-
nected to precisely one fifo, and each fifo is connected to exactly one output port
and exactly one input port. In the figure the ports are represented by black dots,
and the fifos are represented by arrows. The structure of a process network, i.e., the

7

TS
demux

PES
parser

MPEG
decoder

MPEG
decoder

video
scaler

video
mixer

user
interface

ts

pes

es2

es1
yuv1

yuv2 pip

out
pid

pid size position

Figure 1.3: A Process Network

binding of fifos to ports, is static; it is known at compile time and does not change
at run time. The ports and the fifos are typed which means each instance can handle
data of one type only. Different instances can handle different data types.

A process performs a sequence of computation and communication actions that
may be arbitrarily interleaved. With YAPI the computations can be specified by
any C or C++ construct, whereas the following primitives can be used for commu-
nication.

A read action removes data from the fifo and stores it into a local variable of the
process, if data is available. If there is no data the read action will block. Depending
on the implementation the read may incur context switching with associated state
saving. In YAPI, the state saving is implicit since it is invisible to the application
designer. The write function copies data from a local variable into the fifo. In
theory the fifos are unbounded, so a write action will never block. In practical
implementations such as in embedded systems where the amount of memory is
limited, the size of a fifo is bounded. Therefore the write action will block if the
fifo is full to avoid data loss during communication.

Note that the above-mentioned primitives ensure deterministic behavior, i.e., the
same input always results in the same output, and that the size of the fifos deter-
mines the set of feasible process schedules. If the fifos are unbounded, then we
have maximal process parallelism and we obtain the model of computation known
as Kahn Process Networks [16]. If the size of the fifos is zero, then we have mini-
mal process parallelism and we obtain a subset of the model of computation known
as Communicating Sequential Processes [17].

In some cases, for instance, in reactive systems where the communication behavior
of the environment is unknown, the deterministic communication provided by read
and write may be insufficient. To be able to deal with reactive systems we extended

8

the model with non-deterministic communication via the select action. A select
action will select one of the ports that will eventually produce or consume the
given amount of data. In the example below the select is used to handle the input
of a new window width from the window manager.

1.3 Example

We illustrate the use of YAPI with an example of a filter that scales video lines. The
purpose of the example is twofold. First we illustrate the combination of determin-
istic and non-deterministic communication. Second we illustrate the decoupling of
the data types that are used for communication and computation. To this end we
assume that the filter receives a stream of window widths from a window manager
through input port � and a stream of pixels from a video source through input port� . The function of the filter is to scale the incoming video frames according to
the incoming window widths and to transmit the resulting stream of pixels through
output port � as outlined in the code fragment shown in Figure 1.4.

for all frames in sequence
 if (select(p, 1, q, h x w) == 0)
 read(p, w’, 1)
 for all lines l in frame f
 read(q, l, w)
 scale line l of width w
 to line l’ of width w’
 write(r, l’, w’)

p

q

r
pixel

pixel

width

video
display

video
source

window
manager

Figure 1.4: Horizontal Video Scaling

The video source and the window manager are not synchronized. We assume that
the video source produces frames at a constant rate using write action write �������
	��
��
��� , where � � is an output port and 	 is a video frame of � video lines that each con-
tain � video pixels. The behavior of the window manager is unknown because it is
controlled by the user. In order to cope with the non-deterministic behavior of the
window manager we guard the read action of the window width in the filter with the
select action select ��������� � �
��
 ��� . If the select action returns 0 then this indicates
that port � can deliver one token. Hence, we initiate the read action read ����� � � ��� �
to obtain the new window width � � without the danger of blocking forever. If the
select action returns 1 then this means that port � can deliver ��
 � tokens. Hence,
we initiate the filtering of the next video frame. The resulting latency between input
and output depends on the granularity of the filter. The filter shown in the example

9

is line-based which means that it reads the video frame by � consecutive read ac-
tions read � � ��� � ��� where � represents a video line of � pixels thereby introducing
a latency of one video line. Frame-based and pixel-based filters are also feasible.
Note that in this scenario it is possible to scale two or more video frames to the
same window width, but that it is not possible to change the width of a window
in the middle of a video frame. In order to specify the latter, for instance to allow
non-rectangular windows, the select action should be moved to the inner loop that
iterates over the video lines.

1.4 Related Work

Kahn process networks [16] is a model of computation that is often used for mod-
eling stream processing applications. In this model, concurrent processes commu-
nicate through unidirectional first-in-first-out channels with unbounded capacity.
Each of the processes performs sequential computation on its private state space.
The computation actions are interleaved with communication actions that read data
from input channels and write data to output channels. Read actions are blocking,
i.e., a process that reads from an empty channel stalls until the channel has suf-
ficient data to complete the read action. Write actions are non-blocking because
the channels have unbounded capacity. A well-known property of a Kahn pro-
cess network is that it is deterministic, i.e., the stream of data that travels along
each channel is determined by the given input data; it does not depend on the or-
der in which the processes are executed. For this reason, an application designer
can combine processes that represent stream processing functions into process net-
works without specifying their order of execution. Moreover, a system designer
can exploit the concurrency between the processes by using processing elements
that operate in parallel.

In some implementations of Kahn process networks, the blocking read semantic
incurs a considerable amount of context switching overhead. Dataflow process
networks [15], which are a special case of Kahn process networks, avoid this over-
head by transforming the processes into atomic actors that are fired when input data
is available. Once an actor has been fired, it cannot stall. If it cannot complete the
computation because it requires more input data, then it must save its internal state
such that it can resume the computation on the next firing. The literature contains
many references to variants of dataflow process networks such as synchronous or
static dataflow [7], cyclo-static dataflow [14], and dynamic dataflow [2]. Many
commercial vendors offer software packages for modeling signal processing sys-
tems based on dataflow process networks. Examples of such packages are SPW
[11] and DSP Station [5]. Another example of a software package that is based on
the data-flow paradigm is SLAM+C [21] which was developed at Philips Research.

10

We argue that dataflow process networks are less suited for modeling data-dependent
applications because they place the burden of state saving on the application de-
signer rather than on the system designer. Explicit implementation of state saving
in a dataflow program is a form of over-specification which can lead to unnecessary
computation or communication. The reason for this is that the need for state saving
and the implementation of state saving are design decisions. A system designer can
avoid the need for state saving by avoiding resource sharing. If a system designer
decides to apply resource sharing then an on-line resource scheduler with multi-
tasking capabilities can provide automatic state saving. Only in case of resource
sharing without multi-tasking capabilities there is a need for explicit state saving.
For this reason we resort to the more general model of Kahn process networks
which assumes implicit state saving, thereby leaving the use and the implementa-
tion of state saving as design decisions to a system designer.

A limitation of Kahn process networks is that they cannot model reactiveness such
as user interaction. This is caused by the fact that the absence and the occurrence
of non-deterministic events cannot be made known to the processes. Control flow
models such as finite state machines provide a solution for this problem by assum-
ing a broadcast mechanism to communicate events in which each actor is sensitive
to specific events. These models often contain a global notion of time such that
time stamps can be associated with all events which is needed to process them in
a correct order. This makes these models less suited for the implementation of
computationally intensive applications because the amount of parallelism is lim-
ited. Furthermore, the underlying broadcast mechanism of these models is difficult
to implement on parallel systems with distributed memory. Examples of software
packages supporting control flow modeling are Statecharts [12], Esterel [6], and
Polis [1].

The Ptolemy system [10] has been designed to support a heterogeneous mix of
models of computation for co-simulation. It attempts to combine the semantics
of control and data flow models at their interfaces [3]. Although this is feasible
for functional simulation, we argue that this does not allow hardware software co-
design because the models of computation are already tuned towards a target imple-
mentation. Another approach called Process Coordination Calculus [4] combines
data-driven and event-driven processes in a single process network with stream-
based, event-based, and register-based communication schemes. A specification
consists of a process network and a set of scheduling constraints to ensure deter-
ministic behavior.

To extend the deterministic model of Kahn process networks with non-deterministic
events we pursue the approach of Martin [9], who has introduced a communication
primitive known as the probe in combination with the model of Communicating Se-
quential Processes [17]. In this model concurrent processes communicate through
unbuffered channels. As a result two communicating processes must complete

11

their communication actions simultaneously. A probe action indicates whether the
process on the opposite side of the channel is stalling because it has initiated a
communication action that cannot be completed. Martin [13] demonstrates the use
of probes to implement channel selection, i.e., selection of one channel out of a
set of channels such that the next communication action on the selected channel
can be completed. Since channel selection is performed at run-time it allows the
modeling of non-deterministic events.

We generalize the notion of probes to buffered channels in order to extend the
model of Kahn process networks with channel selection. Although channel selec-
tion can be implemented with probe actions, YAPI provides a more abstract opera-
tion because we argue that the implementation of channel selection is the concern
of a system designer rather than of an application designer. We hide the algorithm
that selects a channel when there is more than one candidate from an application
designer, because the conditions that determine whether or not a channel is a can-
didate depend on design decisions such as the scheduling of shared resources, the
computation delays, the communication delays, and many more. Since an applica-
tion designer does not know these design decisions, we do not allow an application
designer to control the channel selection algorithm. Therefore, we avoid probe-like
constructs in YAPI that allow application designers to implement their own selec-
tion algorithm. We claim that the abstraction from these implementation details
results in reusable applications that can be mapped onto different target architec-
tures.

1.5 Model of Computation

To describe the structure of a process network, we introduce the notions of process
type set and data type. A process type set defines the set of process types. Each
process type has a set of input ports and a set of output ports. With each port we
associate a data type. A process network consists of a set of processes and a set of
channels. A channel connects a process output port to a process input port of the
same data type. Each port is connected to precisely one channel.

To describe the communication between the processes we provide three functions
called read, write, and select that can be called from within a process. The informal
meaning of these functions is as follows. The read function consumes data from
an input port and stores it in a local variable of the process. The write function
copies the value of a local variable to an output port. The select function selects an
input or output port that eventually will produce or consume data, respectively. To
formalize the semantics of these functions we associate with each port at any time
the number of tokens that it has transferred up to now and the number of tokens
that it has committed to transfer up to now but that not have been transferred yet.

12

To this end we introduce the following definitions.

Definition 1.5.1 Let � be a port. Then at any time

��� ��� � denotes the number of tokens transferred through � ,

��� ��� � denotes the number of tokens committed but not yet transferred
through � ,

��� ��� � denotes the port connected to � by a channel, and

��� ����� � � denotes the value of the
�

-th token at � .

Following the approach of Martin [8], the communication mechanism is based on
the following assumptions. For all channels it must hold at any time that a write
action is not blocked, the number of consumed tokens does not exceed the number
of produced tokens, and the functionality is first-in-first-out.

Axiom 1.5.1 Let ����� � ��� � � be a channel from output port � to input port� ��� � . Then the following invariants hold

��� ��� ���
	 ,

��� � � ��� � ���
� ��� � , and

������������������� � �!�"� � � ��� � ��# �$�%� ������# � .

Under these assumptions we define the semantics of the read, write, and select
functions using preconditions and postconditions as follows. Note that these func-
tions stall when their postcondition cannot be satisfied. Furthermore, note that the
write function is non-destructive which means that the variables of the producing
process keep their values.

Definition 1.5.2 Let � be an input port of type & , ' an array of type & , and �
a positive integer indicating a number of tokens. Then action read ������'�� ���
is defined by

� precondition � ��� �(�%) , and

� postcondition � ��� �*�
),+��.-/� ��������0 �1'32 #54 �6� �����)7+ # � � .

13

Definition 1.5.3 Let � be an output port of type & , ' an array of type
& , and � a positive integer indicating a number of tokens. Then action
write ������'�� ��� is defined by

� precondition � ��� �*�) -/� �����1��0 �1'32 #"4 �%� �����)7+ # � � , and

� postcondition � ��� �*�),+ �.-.� �����1��0 �1' 2 #54 �%� �����)7+ # � � .

Definition 1.5.4 Let
�

be a positive integer, � � up to ��� ports, � � up to� � positive integers indicating requests for numbers of tokens, and � a
positive integer no larger than

�
indicating the index of the selected port.

Then action � � select ��� � � � � ������� � ��� � � � � is defined by

� precondition � � ���1� � � � ��� � �*�
) � � , and

� postcondition � � ���1� � � � ��� � � �7) � ��- � � � � � -	� �)�
$+6��
.�
� � � ���
 � � � .

Following temporal logic theory, the symbol � means eventually. Hence, the select
function selects a port such that the current number of transferred tokens through
this port plus the requested number of tokens is eventually smaller than or equal
to the number of transferred tokens through the connected port. If we consider an
input port �
 , then this port is a candidate for selection if the corresponding output
port � ���
 � will eventually produce enough tokens to complete a read action of �

tokens. If we consider an output port �
 , then this port is a candidate for selection if
the corresponding input port � ���
 � will eventually consume the tokens produced
by a write action of ��
 tokens. Note that the select function has no effect on the
number of transferred tokens, i.e., it does not produce or consume data.

To describe the functionality of the processes we use a sequential programming
language. We introduce an additional function called execute to abstract from the
implementation of the functionality in the sequential programming language. To
this end, the functionality between two communication actions has to be annotated
with one or more execute actions. These execute actions annotate the computation
requirements of the processes; they do not provide additional functionality.

1.6 Mapping

The implementation of read, write, select, and execute actions are a concern of a
system designer. Note that different read, write, select, and execute actions may be
implemented in different ways, for instance, because some actions are executed in
hardware and other actions are executed in software.

14

One of the design decisions is to determine the size of the fifos in order to obtain an
implementation in finite memory. Deadlock can occur if they are too small, because
the size of the fifos limits the set of reachable schedules. Going from unbounded
to bounded fifos changes Axiom 1.5.1 such that for all channels it holds that at any
time a write action and a read action are not blocked simultaneously, the number
of produced tokens minus the number of consumed tokens is bounded by the size
of the channel, and the functionality is first-in-first-out. Formally, this is denoted
as follows.

Axiom 1.6.1 Let ����� � ��� � � be a channel of size � . Then the following
invariants hold

� � � ��� �*�
	 ��� � � � � ��� � �*�
	 � ,
��	/�
� ��� ��� � � � ��� � � � � , and

������������������� � �!� � � � � ��� � ��# �(�%� ������# � � �

The read and write actions can be implemented such that the number of communi-
cated tokens can exceed the size of the fifo. To this end, these actions have to be
preempted when the number of committed tokens is not present or does not fit in
the fifo.

Another design decision is the implementation of the notion of ‘eventually’ in the
select function. For process networks that cannot be scheduled off-line, for instance
due to data-dependent functionality, we have chosen to strengthen the expression
� �)�
 + ��
 � � � � ���
 � � � in the postcondition of the select function to � ���
 �(+�
 �
� � � ���
 � � + � � � ���
 � � . We obtain the number of committed tokens � � � ���
 � �
through the number of tokens of the read and write actions, i.e., the initiation of a
read or write action of � tokens sets a commitment that decreases during transfer
of the tokens. As a result the scheduling horizon is limited to one communication
action, i.e., a select action takes one incomplete read or write action into account.
Again this introduces deadlock if the size of the fifos is too small. Note that if
the process network is a dataflow process network, then the firing rules can be
implemented with select actions. In that case the read and write actions do not
have to stall because the firing rules satisfy Axiom 1.6.1.

The above-mentioned design decisions are used in the YAPI run-time library that
is used by application designers to simulate the functionality of a process network
on a workstation. Other YAPI implementations, in particular those proposed in
COSY [22] and SPADE [20], target mixed hardware and software realizations in
systems-on-chip. In the initial stage of the design process, these implementations
are abstract performance models to allow fast design space exploration. Subse-
quently, these performance models are refined into cycle-accurate models to allow
final implementation.

15

Chapter 2

Application Programmer’s Guide

16

2.1 Getting Started

2.1.1 Introduction

To get into YAPI as quickly as possible, we illustrate the concepts by following
the design of a Producer-Consumer application, which is the Hello World type
of application for YAPI. The example is fully compliant with the coding style as
presented in Section 2.6.1, but to avoid that you immediately get lost in details only
the very essential features of YAPI are used. The more advanced features of YAPI
are introduced in Section 2.2, and a complete reference can be found in Section 2.7.
The complete source code of the Producer-Consumer example can be found in the
YAPI Applications package.

We assume that you are already familiar with C++ concepts, such as classes, con-
structors, (virtual) member functions, inheritance, function overloading, templates,
and references. For a good introduction to C++ we refer to [19].

2.1.2 Producer-Consumer

In the Producer-Consumer example we have two processes, a producer which
writes integer values to a channel, and a consumer which reads the values from
the channel. The first value that is written by the producer indicates the number of
values that will follow.

Producer Consumer
Fifo

Figure 2.1: Producer-Consumer

In the remainder of this section we will discuss the Producer-Consumer example
in a top-down way. We start with the main program in which the process network
is created and started. Next we describe the process network, followed by the
producer process and the consumer process.

2.1.3 The Main Program

To run a YAPI application one must first create a process network, and next call
the YAPI function start to execute it. In its simplest form this is done in the

17

main function as shown in Program 2.1.1. Assume that the class PC represents the
Producer-Consumer process network which is declared in the file pc.h. We create
the network with the declaration PC pc(id("pc")). This may look compli-
cated, but basically what happens is that we create a variable pc which is a process
network of type PC with identification string "pc". Next we execute the network
using the start function from the YAPI Run-Time Environment. The start
function is declared in the include file yapi.h.

Program 2.1.1 The Main Program (main.cc)

#include "pc.h"
#include "yapi.h"

int main()
{

RTE rte;

// create the process network
PC pc(id("pc"));

// start the process network
rte.start(pc);

return 0;
}

2.1.4 The Process Network

The Producer-Consumer process network is represented by the class PC. The dec-
laration of this class can be found in the file pc.h, and the implementation can be
found in the file pc.cc.

18

Program 2.1.2 Process Network Declaration (pc.h)

#include "yapi.h"

#include "producer.h"
#include "consumer.h"

class PC : public ProcessNetwork
{
public:

PC(const Id& n);
const char* type() const;

private:
Fifo<int> fifo;

Producer producer;
Consumer consumer;

};

The class PC is derived from the YAPI class ProcessNetwork. The class has
two public member functions, namely a constructor and a type function. These
two functions must be defined in all process networks. The constructor is used
to create the network in the main program, and the type function may be used
to identify the type of the network as a string, for instance for debugging. Next,
the class has private members, which in case of a network are the fifos and the
processes that constitute the network. In case of the Producer-Consumer network
we have a fifo that conveys values of type int, a process of type Producer
called producer, and a process of type Consumer called consumer. The fifo
is declared in the YAPI include file yapi.h, and the processes are declared in the
user-defined include files producer.h and consumer.h, respectively.

Program 2.1.3 Process Network Implementation (pc.cc)

#include "pc.h"

PC::PC(const Id& n) :
ProcessNetwork(n),
fifo (id("fifo")),
producer(id("producer"), fifo),
consumer(id("consumer"), fifo)

{ }

const char* PC::type() const
{

return "PC";
}

19

The implementation of the class PC can be found in the file pc.cc. In this file we
find an implementation of the constructor and the type function. The constructor
first initializes the base class, ProcessNetwork, and next it initializes the pri-
vate members, which are the fifo and the two processes. The initialization of these
objects is performed by calling their constructors. The constructor of a fifo has one
argument, namely its identification string. The constructor of a process also has an
identification argument, and one or more fifos that are connected to its input and
output ports. In this example the fifo is passed as an argument to the constructor
of the producer, where it is bound to the output port, and the fifo is also passed as
an argument to the constructor of the consumer where it is bound to the input port.
The type function of a process network returns the class name as a string, which is
"PC" in this case.

2.1.5 The Producer

The producer process is represented by the class Producer. The class is declared
in the include file producer.h and its implementation can be found in the file
producer.cc.

A user-defined process must be defined by a class that is derived from the YAPI
class Process. It must have a constructor, a type function, and a main function.
The purpose of the constructor and the type function are similar to those of a pro-
cess network. Additionally, a process has a main function which represents the
functionality of the process. A process network has no main function because its
functionality is represented by its processes and fifos. A process has one or more
input or output ports which must be declared as private member variables such that
they can be accessed by the process from the main member function but not by
other processes. The producer has one output port of type int, called out. The
classes OutPort and Process are YAPI classes which are declared in include
file yapi.h.

The constructor of the producer has two arguments, an identification of type Id,
and an output object of type Out<int>. Template class Out is a base class of
both Fifo and OutPort such that both fifos and output ports can be passed as
arguments. In this example output port out is connected to fifo fifo in Pro-
gram 2.1.3. In Section 2.2.1 we will show an example in which an output port is
connected to another output port.

20

Program 2.1.4 Producer Process Declaration (producer.h)

#include "yapi.h"

class Producer : public Process
{
public:

Producer(const Id& n, Out<int>& o);
const char* type() const;
void main();

private:
OutPort<int> out;

};

Program 2.1.5 Producer Process Implementation (producer.cc)

#include "producer.h"
#include <iostream>

Producer::Producer(const Id& n, Out<int>& o) :
Process(n),
out(id("out"), o)

{ }

const char* Producer::type() const
{

return "Producer";
}

void Producer::main()
{

std::cout << "Producer started" << std::endl;

const int n = 1000;

write(out, n);

for (int i=0; i<n; i++)
{

write(out, i);
}

std::cout << type() << " "
<< fullName() << ": "
<< n << " values written"
<< std::endl;

}

21

The implementation of the class Producer can be found in the file producer.cc.
In this file we find an implementation of the constructor, the type function, and the
main function. In the constructor we first initialize the base class, Process, and
next we initialize the private member, which is the output port. The constructor of
an output port has two arguments, namely its identification string, and an output
object, which could be a fifo, or another output port as we will see later.

The type function of class Producer returns the string "Producer". In the
main function the constant n defines the number of tokens to be transferred. First
the number of tokens is written to output port out, and next, in the for-loop, the
numbers are written. Finally, before exiting the main function the type and the
name of the process are printed to indicate that the process has terminated success-
fully.

2.1.6 The Consumer

The consumer process is similar to the producer. The differences are that it has an
input port instead of an output port, and that data is read from this port instead of
being written.

Program 2.1.6 Consumer Process Declaration (consumer.h)

#include "yapi.h"

class Consumer : public Process
{
public:

Consumer(const Id& n, In<int>& i);
const char* type() const;
void main();

private:
InPort<int> in;

};

22

Program 2.1.7 Consumer Process Implementation (consumer.cc)

#include "consumer.h"
#include <assert.h>
#include <iostream>

Consumer::Consumer(const Id& n, In<int>& i) :
Process(n),
in(id("in"), i)

{ }

const char* Consumer::type() const
{

return "Consumer";
}

void Consumer::main()
{

int n,j;

std::cout << "Consumer started" << std::endl;

read(in, n);

for (int i=0; i<n; i++)
{

read(in, j);
assert(i==j);

}

std::cout << type() << " "
<< fullName() << ": "
<< n << " values read"
<< std::endl;

}

The definition of the consumer completes the Producer-Consumer example. If you
are new to YAPI, and you wish to experiment with some toy YAPI program, we
suggest that you start with the Producer-Consumer example, and add for exam-
ple an extra process between the producer and the consumer. This process could
simply pass the data, or do some “real” processing. You may also create an input
process that reads data from a file, or an output process that writes data to a file.

23

2.2 Carrying On

2.2.1 Hierarchical Process Networks

With YAPI it is possible to create hierarchical process networks. A hierarchical
network is a network that contains other process networks. The purpose of such
a hierarchy is to raise the level of reuse from processes to process networks. A
process network is also an abstraction of some functionality, similar to a process.
This abstraction hides information which is essential for managing the complexity.

To be able to use a process network as a component within another network, the
process network must have ports to let it communicate with its environment. Here,
we present an example of such a process network that can be used as a compo-
nent within another network. The process network scales pictures in the horizontal
and vertical direction. The process network has two ports, in and out, two sub-
processes, x and y, and an internal fifo channel f.

scaleXY

scaleY
in outf

y

scaleX

x

Figure 2.2: Horizontal and Vertical Scaler

Program 2.2.1 ScaleXY Process Network Declaration

class ScaleXY : public ProcessNetwork
{
public:

ScaleXY(const Id& n, In<int>& i, Out<int>& o);
const char* type() const;

private:
InPort<int> in; // input port
OutPort<int> out; // output port
Fifo<int> f; // internal fifo
ScaleX x; // horizontal scaler
ScaleY y; // vertical scaler

};

The network structure is created by the constructor, which first initializes the ports,

24

then the internal fifos and finally the internal processes. In this network, the input
port of the horizontal scaler is connected to the process network input port, in.
The output port of the vertical scaler is connected to the output port of the process
network, out. The output port of the horizontal scaler and the input port of the
vertical scaler are connected to the internal fifo of the process network. As this
example shows, the ports of the internal processes (and internal process networks)
can be connected to internal fifos, or to the ports of the process network. The ports
of the process network will be connected to external fifos, or the network ports of
the surrounding network. There is no limit to the nesting of process networks.

Program 2.2.2 ScaleXY Process Network Implementation

ScaleXY::ScaleXY(const Id& n, In<int>& i, Out<int>& o) :
ProcessNetwork(n),
in (id("in"), i),
out(id("out"), o),
f (id("f")),
x (id("x"), in, f),
y (id("y"), f, out)

};

It is important to note that the order in which the constructors of the ports, fifos,
and processes are called is the same as the order in which they are declared in
the header file. Therefore, always declare ports first, fifos next, and processes and
process networks last. If you do not to comply to this rule, then the connection
between ports and fifos may fail which causes unexpected behavior. Furthermore,
note that you do not directly connect the input (output) of process x (y) to variable
i (o), since you are then bypassing the ports of the process network. Therefore,
always connect processes and process networks to member variables (ports and
fifos) only.

Identification

As we saw earlier, process networks can be hierarchical. In fact, all YAPI objects,
such as processes, ports, fifos, and process networks are part of a network hierar-
chy. In such a hierarchy every object, except the root process network, has a parent
object. The parent of a port is a process or a process network. The parent of a fifo,
the parent of a process, and the parent of a process network is a process network.
The class Id has been introduced to identify the objects in the hierarchy, and to be
able to retrieve information about these objects at run-time. This information may
be used for many purposes, such as debugging.

25

The class Id provides the member functions parent, name, and fullName, to
obtain the parent object, the name, and the full name of the object, respectively.
The name of an object refers to the instance name of the object, represented by
a null-terminated character string. The full name of an object is a representation
of the complete path of the object in the network hierarchy. The full name is
constructed by concatenating the names of the objects on the path starting at the
root network, separated by dots. For example, the full name of output port out in
process producer in process network pc is pc.producer.out. We recommend that
you make the full names of objects unique, however this is not mandatory.

The classes ProcessNetwork, Process, Fifo, InPort, and Outport are
derived from class Id, and thus the identification is supported for all these classes.
In addition the classes ProcessNetwork and Process have a member func-
tion type which returns the class name of the object, represented by a null-
terminated character string. The type is a property of the class, and is thus identical
for every instance of a class

Programs Program 2.1.5 and Program 2.1.7 show examples of the usage of the
member functions fullName and type, to print information about the producer
and consumer processes before they terminate. The output of this example is as
follows.

Consumer started
Producer started
Producer pc.producer: 1000 values written.
Consumer pc.consumer: 1000 values read.

The identification of an object is set via the first argument of its constructor. In
the implementation of the constructor, the Id is passed to the constructor of the
base class. In the constructor also the identification of the member objects must
be set. In case of a process these are the input and output ports. Setting the Id of
the member objects is done in the same way, namely via the first argument of the
constructor. To ease the creation of an Id for the members, the member function id
is available. This function takes a name as an argument and creates an Id with this
name, and the current object as a parent. This Id is then passed to the constructor
of the member object.

Identification is mandatory for all ports, fifos, processes and process networks. The
implementation of the type function is also mandatory. This member function is
a pure virtual function which will generate a compile error if the implementation
is omitted.

26

2.2.2 Communication

Scalars

Processes communicate with each other via uni-directional fifo channels. A fifo
has one input end and one output end, i.e., there is exactly one process that writes
to the channel and there also is exactly one process (possibly the same) that reads
values from the fifo. From the process point of view we have input ports which
transfer data from the fifo to the process by reading values, and output ports which
copy data from the process to the fifo by writing values. The syntax for reading
values is:

read(p, x)

This statement reads a value from input port p and stores this value in variable x.
The syntax for writing values is:

write(q, y)

This statement writes the value of variable y to output port q.

In YAPI, channels are strictly typed, i.e., one can only communicate one type of
value via a fifo. In both the read and the write statement the type of the port must
be identical to the type of the fifo and to the type of the variable.

Vectors

In addition to reading and writing of scalars, one can also read or write vectors. We
call these functions vector read and vector write. The vector read and write will
read or write the specified number of items in one call. The normal read and write
functions are also referred to as scalar read and write. The syntax for reading a
vector of values is:

read(p, X, m)

This statement reads m values from input port p and stores these values consecu-
tively in array X in array elements X[0] up to X[m-1]. The syntax for writing an
array of values is:

27

write(q, Y, n)

This statement writes n consecutive values of array Y from array elements Y[0]
up to Y[n-1] to output port q. In vector read and write statements the type of the
port must be identical to the type of the array element. For instance, if the ports are
of type integer then X and Y must be arrays of integers. Note that the number of
communicated values does not have to be known at compile-time, i.e., the value of
variables m and n is determined at run-time.

To illustrate the use of vector read and write operations, we modify the Producer-
Consumer example. First we introduce a vector write operation in the producer. To
this end, we introduce an array Y of size n to which we assign the values that are
to be written with a vector write operation.

Program 2.2.3 Vector Implementation of the Producer

void Producer::main()
{

const int n = 1000;

write(out, n);

int Y [n];

for (int i=0; i<n; i++)
{

Y[i] = i;
}

write(out, Y, n);

std::cout << type() << " "
<< fullName() << ": "
<< n << " values written"
<< std::endl;

}

Similarly, we introduce a vector read operation in the consumer. To this end, we
introduce an array X of size n. Note that the value of n is not known to the con-
sumer at compile time. Therefore, we allocate and free memory space at run time
using the new and delete operations.

28

Program 2.2.4 Vector Implementation of the Consumer

void Consumer::main()
{

int n;

read(in, n);

int* X = new int [n];

read(in, X, n);

for (int i=0; i<n; i++)
{

assert(i==X[i]);
}

delete [] X;

std::cout << type() << " "
<< fullName() << ": "
<< n << " values read"
<< std::endl;

}

Note that the vector implementation of the producer (consumer) can be combined
with the scalar implementation of the consumer (producer), since the interfaces of
the processes have not changed. Only their internal implementations have changed.
For example, the producer can be vector based having internally an array variable,
while the consumer can be scalar based having internally a single variable. Hence,
this example shows the purpose of the vector read and write operations, that is, to
enable the decoupling of the data structures of the processes without introducing
the need for additional read and/or write function calls.

Furthermore, note that it is up to the actual implementation of the vector read and
write operations how the n consecutive values are communicated. For instance,
when the room in the fifo is sufficient, the vector write may copy all values in one
burst. Only if there is insufficient room in the fifo (e.g. when small fifos are used),
the communication will take place at the smaller grain size, but this is hidden from
the application designer.

Non-determinism

The process networks we discussed so far are deterministic, i.e., for given input
they produce the same output, independent of how the execution of the processes

29

is scheduled. This property allows the application designer to plug a process or pro-
cess network into an application and to execute it without the concern of scheduling
the processes. However, there are applications, for instance interactive applica-
tions, that are not deterministic. To be able to model these applications as process
networks, we introduce the synchronization operation select. The purpose of the
select operation is to synchronize the calling process with non-deterministic neigh-
boring processes.

A process that calls a select operation synchronizes with another process when the
other process has committed to communicate the number of tokens requested by
the calling process. In general, a select operation can take an arbitrary number of
ports as arguments. With each port we associate a positive integer argument that
indicates that the port must be willing to communicate that number of tokens in
order to be a candidate for selection. This number is called the requested number
of tokens. The default value for the requested number is one. Optionally, one can
specify other values but in that case these values have to be specified for all ports
in the select operation. We refer to a select operation without and with optional
arguments as scalar and vector select operation, respectively. The syntax for a
scalar select operation between two ports is

select(port0, port1)

The syntax for a vector select operation between two ports is

select(port0, n0, port1, n1)

An input port is a candidate for selection if and only if it holds that the requested
number of tokens is smaller than or equal to the number of tokens that the corre-
sponding output port has committed to produce plus the number of tokens in the
fifo. An output port is a candidate for selection if and only if it holds that the re-
quested number of tokens is smaller than or equal to the number of tokens that the
corresponding input port has committed to consume minus the number of tokens
in the fifo. A select operation returns an integer value that identifies the number of
the selected port assuming that the ports are consecutively numbered starting from
zero. So the two select operations mentioned above return 0 or 1. Note that a select
operation does not terminate, i.e., its execution is suspended, until at least one of
the mentioned ports is a candidate for selection.

To illustrate the use of select operations, we extend the Producer-Consumer exam-
ple to a Producer-Filter-Consumer example. The function of the filter is to multiply
the incoming integer values with an integer coefficient and to output the results. We

30

assume that the filter coefficients are produced by another process. The number of
coefficients produced by this process nor the rate of production are known. Note
that also the time at which they are produced is not known because each process
has its own notion of time. In the filter we may read a new coefficient before receiv-
ing a new integer value. This is done only if the select operation has selected the
port from which the coefficients are read, i.e., when the producer of the coefficients
has committed to produce at least one other coefficient. If the select operation has
selected the other port then we process the next value. The select operation blocks
until it can select a port, i.e., until the other processes have committed to commu-
nicate a coefficient or a value.

Program 2.2.5 Filter Process Declaration

class Filter : public Process
{
public:

Filter(const Id& n, In<int>& i0,
In<int>* i1, Out<int>& o);

const char* type() const;
void main();

private:
InPort<int> in0; //input port for coefficients
InPort<int> in1; //input port for values
OutPort<int> out; //output port for values

};

Program 2.2.6 Filter Process Implementation

void Filter::main()
{

int value;
int coefficient = 1;

while (true)
{

if (select(in0, in1) == 0)
{

read(in0, coefficient);
}
read(in1, value);
write(out, coefficient*value);

}
}

31

Note that if the application designer adds an else clause to the if statement and
moves the read and write operation of the values into this clause, then the filter may
’skip’ coefficients, i.e., some coefficients may never be used in a multiplication.
Such a decision affects the functionality. Therefore it must be made explicit by the
application designer.

Finally, note that the selection algorithm that selects a port when there is more than
one candidate cannot be controlled by the application designer. The application
designer must assume that the selection is a non-deterministic choice between the
candidate ports. The reason for this is that in general the status of the ports, i.e.,
whether a port is a candidate or not, depends on the scheduling of the processes.
Vice versa the scheduling of the processes depends on the selection of the ports.
The scheduling algorithm of the processes is a design decision taken at a later
stage by the system designer based on additional information such as computation
and communication delays, resource sharing, timing constraints, etc. Similarly
the selection algorithm is a design decision taken by the system designer when
mapping an application onto an architecture. These design decision cannot be ad-
dressed with YAPI. The application designer has to program the application in such
a way that the application is functionally correct independent of the implemented
scheduling and selection algorithms.

2.2.3 Fifo Sizes

Normally, a fifo is initialized as follows:

fifo(id("fifo"))

This initializes the fifo without specifying the size. Normally, the sizes of fifos have
no effect on the functionality of the application, unless they are too small which
may cause deadlock. We speak of deadlock when none of the processes can make
progress and none of the processes has terminated.

We distinguish between two cases of deadlock. In the first case, all processes are
blocked by either a read or a select operation. In that case the fifo sizes do not affect
the occurrence of deadlock. Instead you should analyze the communication behav-
ior in your process network since the number of produced tokens is smaller than
the number of tokens to be consumed. In the second case, one or more processes
are blocked by a write operation. In that case our run-time environment attempts
to automatically increase the size of the corresponding fifo such that the write op-
eration can be completed and deadlock is avoided. This will fail if the maximum
fifo size is reached. The run-time environment by default allocates 8 kilobytes of

32

memory for each fifo. Hence, the maximum size of a fifo is equal to 8192 bytes
divided by the number of bytes of one token.

To support deadlock analysis, fifos can be declared with two optional arguments,
namely the minimum size and the maximum size. A fifo with a minimum size of
100 tokens is initialized as follows:

fifo(id("fifo"), 100)

In this case the run-time environment may still decide to choose a larger size, but
not smaller than 100. Note that the specification of a minimum size is functional
because it specifies constraints to prevent deadlock. This is needed if the environ-
ment does not automatically increase fifo sizes at run-time. If the minimum size
exceeds the default maximum size of the run-time environment, then the maximum
size of the run-time environment is changed into the minimum size that has been
specified by the application designer.

A fifo with at least 100 tokens and at most 200 tokens is initialized as follows:

fifo(id("fifo"), 100, 200)

In this case the run-time environment chooses a fifo size between 100 and 200 to-
kens. Note that the specification of a maximum size is not functional but that it
adds implementation constraints. The application designer can use the maximum
fifo size to determine the minimum fifo size at which the process network is free
of deadlock. To this end, typically the minimum and maximum size are equal such
that the fifo size is fixed. Once the application designer has determined the mini-
mum size, the maximum size can be discarded to obtain maximum implementation
freedom.

2.2.4 Multicast

A fifo can be connected to multiple input ports. In that case, the data that is written
into the fifo will be delivered to all input ports, i.e., all input ports receive all the
data that is written by the output port. Multicast is automatically implemented if a
fifo is given as argument to multiple process or process network constructors. The
code fragment below gives an example.

fifo(id("fifo")),
producer(id("producer"), fifo),
consumer1(id("consumer1"), fifo),
consumer2(id("consumer2"), fifo)

33

Similarly, multicast is automatically implemented if you give an input port of a
process network as argument to multiple constructors of processes and process
networks.

Please note that each output port can be connected to at most one other object.
Hence, it is not possible to connect an output port to a fifo and to an output port of
the encapsulating process network in order to use data both inside and outside of
that process network. In such cases, we recommend to use a special output process
that reads data from a multicast fifo and writes it to an output port of the process
network. The internal processes and process networks can read from that same
multicast fifo.

A select operation (Section 2.2.2) on an output port that is connected to multiple
input ports can select that output port if one of the connected input ports requests
sufficient tokens. So it has OR-semantics.

The full name of a multicast fifo is extended with an additional index between
square brackets in the status and workload tables; see Section 2.3.1 and Section 2.4.
Each output and input port pair gets a unique index. The indices are consecutively
numbered starting from zero.

34

2.3 Run-Time Environment

A run-time environment is an environment that can execute process networks. In
this section we present a run-time environment which is designed for functional
simulation of process networks. The run-time environment can be activated by
calling the function start which is declared in the include file yapi.h, see for
example Program 2.1.1.

2.3.1 Deadlock

When none of the processes can make progress and none of the processes has
terminated, we speak of deadlock. In case of deadlock the run-time environment
terminates the application and displays information about the history and status of
the processes and fifos in order to support the programmer with the debugging of
the application.

As an example we modify the Producer-Consumer program by adding a fifo from
the consumer to the producer and by letting both the producer and the consumer
read from an empty fifo. To save space we leave out the declarations in the header
files and only show the implementations in the source files. The process network
is graphically depicted in Figure 2.3.

producer

fifo1

consumer

fifo0

Figure 2.3: Modified Producer-Consumer example suffering from deadlock.

Program 2.3.1 Process Network Implementation

#include "pc.h"

PC::PC(const Id& n) :
ProcessNetwork(n),
fifo0 (id("fifo0")),
fifo1 (id("fifo1")),
producer(id("producer"), fifo1, fifo0),
consumer(id("consumer"), fifo0, fifo1)

{ }

35

Program 2.3.2 Producer Process Implementation

#include "producer.h"
#include <iostream>

Producer::Producer(const Id& n, In<int>& i, Out<int>& o) :
Process(n),
in(id("in"), i),
out(id("out"), o)

{ }

void Producer::main()
{

const int n = 1000;

write(out, n);

for (int i=0; i<n; i++)
{

write(out, i);
}

int x;
read(in, x);
write(out, x);

std::cout << type() << " "
<< fullName() << ": "
<< n << " values written"
<< std::endl;

}

36

Program 2.3.3 Consumer Process Implementation

#include "consumer.h"
#include <assert.h>
#include <iostream>

Consumer::Consumer(Id n, In<int>& i, Out<int>& o) :
Process(n),
in(id("in"), i),
out(id("out"), o)

{ }

void Consumer::main()
{

int n;

read(in, n);

for (int i=0; i<n; i++)
{

int j;
read(in, j);
assert(i==j);

}

int x;
read(in, x);
write(out, x);

std::cout << type() << " "
<< fullName() << ": "
<< n << " values read"
<< std::endl;

}

The additional code in the producer and consumer causes deadlock since the con-
sumer waits for input on fifo 0 and the producer waits for input on fifo 1. The run-
time environment detects the deadlock and displays a list of the blocked processes
and a fifo status table, as shown below. The list of blocked processes shows that
the consumer process pc.consumer and the producer process pc.producer,
are blocked by read actions on fifos pc.fifo0 and pc.fifo1, respectively.

37

YAPI > Deadlock, since all processes have blocked:
Blocked processes:

|Process by on Fifo |
|pc.consumer read pc.fifo0|
pc.producer read pc.fifo1

Fifo Status:
--
| min max size room data Wtokens Rtokens Wpend Rpend Wneed Rneed|
|pc.fifo0 1 2048 128 128 0 1001 1001 0 1 0 0|
pc.fifo1 1 2048 128 128 0 0 0 0 1 0 0

The fifo status table has 12 columns, and lists the state of all fifos in the process
network at the moment when the deadlock occurred. Per fifo it lists the name, the
minimum and maximum size, the actual size, the free space in the fifo (room), the
number of tokens in the fifo (data), the number of tokens that have been written
(Wtokens), the number of tokens that have been read (Rtokens), the number of to-
kens in a pending write (Wpend), the number of tokens in a pending read (Rpend),
the number of tokens in a pending select on an output port (Wneed), and the num-
ber of tokens in a pending select on an input port (Rneed). Especially the last four
colums are important for detecting the cause of a deadlock. A non-zero number of
pending tokens indicates that a read or write call has been issued, but the call has
not terminated yet because not all tokens could be communicated, i.e., the process
is blocked.

In this example Rpend of fifos pc.fifo0 and pc.fifo1 is 1, which is an indi-
cation that a process is waiting for one token to be read. The list of blocked pro-
cesses can be used to find the corresponding process, which are pc.consumer
and pc.producer in this example.

From the table we can furthermore derive that both fifos have an actual size of 128
values. The fifos contain no data, and thus, there is room for 128 values. 1001
values have been written and 1001 values have been read.

When deadlock has been detected and the deadlock information has been printed,
the start function will return and the program can continue normally.

The use of a select operation can introduce deadlock. As an example we take
a select operation on a single input port with a request for ten tokens. A write
operation on the corresponding output port of ten or more tokens does not introduce
deadlock because the number of committed tokens is larger than or equal to the
number of requested tokens. A write operation on the corresponding output port
of less than ten tokens introduces deadlock if and only if the number of committed

38

tokens plus the number of tokens in the fifo is smaller than the number of requested
tokens and larger than the fifo size.

As a second example we take a select operation on a single output port with a
request for ten tokens. A read operation on the corresponding input port introduces
deadlock if and only if the number of committed tokens minus the number of tokens
in the fifo is smaller than the number of requested tokens and larger than zero.

The above-mentioned deadlock for the select operation on the input port can be
avoided either by increasing the size of the fifo or by increasing the number of
committed tokens in the write operation. The above-mentioned deadlock for the
select operation on the output port can be avoided only by increasing the number
of committed tokens in the read operation.

2.3.2 Termination

A process network terminates when all processes terminate. In that case the start
function will return and the program can continue normally.

When none of the processes can make progress and one or more processes have
terminated, we assume that we are finished. In order to find out which processes
terminated and which processes did not terminate we print the process status table
and fifo status table as in the case of deadlock as explained in the previous section.

2.3.3 Stack Size and Stack Overflow

In the YAPI run-time environment a separate stack space is allocated for each pro-
cess in the process network. This stack is used to store the intermediate results
of a process. All function calls from the main member function will be done on
the stack, which includes the storage for local (automatic) variables. Intermediate
results in expressions may also be stored on the stack if insufficient registers are
available. The private member variables of a process and memory that is obtained
via malloc or new are not allocated on the stack.

To limit the total amount of stack space to a reasonable amount the stack space of
each process is fixed to 64 kilobytes. This should suffice for the individual stack of
most processes as well as for the total stack due to the total number of processes.
However, for some processes this stack size might be insufficient and may result in
a stack overflow. In the YAPI run-time environment a stack overflow will not result
in an automatic increase of the stack space, but will result in an access violation
as a result of a protected memory space that is inserted between the stacks of two

39

processes. The access violation causes the program to be killed and a core dump
to be generated. Next, a debugger (gdb or ddd) can be used to find the location of
the error. Usually this happens on a source line where a large data structure such
as an array is accessed. Note that this form of stack protection is not available in
the CYGWIN version of the YAPI run-time environment.

Of course it is better to avoid the above-mentioned stack overflows and associated
core dumps. Since it is difficult to determine the required stack space of a process
we suggest that you simply avoid that large data stuctures are allocated on the stack.
For video applications this typically means that you should not declare complete
video frames, and at most a few video lines as local (automatic) variables in your
functions. If you need large data structures in your application it is best to allocate
these dynamically on the heap, using malloc or new. Another option is to declare
these variables as private members in your process.

40

2.4 Workload Analysis

Two important properties of an application are its communication workload and
its computation workload [20]. The communication workload is a measure for the
amount of communication in an application, given the input data. The computation
workload is a measure for the amount of computation in the application, given
the input data. In the YAPI run-time environment the communication workload is
measured by counting the number of tokens that are traveling through the fifos. The
communication workload can be printed by calling the following function after the
application has ended:

void printCommunicationWorkload(
const ProcessNetwork& n,
std::ostream& o = std::cout);

The output for an example application with five fifos is shown below. The first
column lists the full names of the fifos. The column Wtokens lists the number of
tokens that have been written to the fifo. The column Wcall lists the number of
write calls, and the column T/W lists the average number of tokens per write call.
Similarly the columns Rtokens, Rcalls, and T/R give the values for the read
calls.

Communication Workload:

| Wtokens Wcalls T/W Rtokens Rcalls T/R|
|pfc.fifo1 1 1 1 1 1 1|
|pfc.fifo2 10 10 1 5 5 1|
|pfc.fifo3 10 10 1 10 10 1|
|pfc.fifo4 1003 1003 1 1003 103 9|
pfc.fifo5 1003 1003 1 1003 1003 1

YAPI also supports the measuring and printing of computation workload. To mea-
sure the computation workload, the C/C++ code of the processes must be annotated
with execute statements. An execute statement is a call of the protected member
function execute of class Process. The argument of the execute statement is
a symbolic instruction that represents the workload that is associated with a certain
code fragment.

void Process::execute(const char* instr);

In the YAPI run-time environment the number of execute calls are counted. These
numbers can be printed with the function printComputationWorkload.

41

void printComputationWorkload(
const ProcessNetwork& n,
std::ostream& o = std::cout);

The table below shows how the output may look like. The first column lists the full
names of the processes, the second column lists the symbolic instruction names,
and the third column lists the number of calls that occurred during execution. The
processes ppc.prd1 and ppc.prd2 have executed the instruction produce
100000 times, ppc.cons has executed instruction start and stop once, and
has executed instruction consume 200000 times.

Computation Workload:

|Process Instruction Count|
|ppc.prd1 |
| produce 100000|
|ppc.prd2 |
| produce 100000|
|ppc.cons |
| start 1 |
| consume 200000|
stop 1

By associating execution times with the instructions, and by multiplying these ex-
ecution times with the instruction counts, one can get a rough estimate of the total
execution time of the application on a certain platform.

42

2.5 Visualization of Process Networks

When large process networks are created is is difficult to obtain a good overview of
the network. In such a case a graphical output of the network, made via the dotty
tools can be useful.

2.5.1 What is Dotty?

The dotty format is a textual format that can be used to represent graphs. The dotty
tools can then be used to create a layout of the graph and output it as a postscript
file. The postscript file can then be used for documentation purposes. An example
process network that is visualized via dotty is shown in Figure 2.4. Dotty is a part of
the Graphviz tools, and can be obtained from http://www.research.att.com/sw/tools/graphviz
. Note that dotty is available for users at the Nat.Lab. through the cadappl tree
(cadenv graphviz).

2.5.2 How to Use Dotty

The function printDotty is used to print a process network in dotty format.

void printDotty(const ProcessNetwork& p,
std::ostream& o = std::cout);

To generate a dotty file one can add a printDotty call to the main program,
as shown in the example below. In this example the process network nw of type
MyNetwork is created, which is then printed in dotty format in the file nw.dot.

43

hsrc
(SHSRC)

FrontEnd
(Process)

user_control
(Process)

Sinfo0

Yi_Info

Y0_Info

Yi_Data

Y0_Data

Ui_Info

U0_Info

Ui_Data

U0_Data

Vi_Info

V0_Info

Vi_Data

V0_Data

finfo_in

finfo_i

info
(Process)

Sinfo1

pixels_out

pixels_out

BackEnd
(Process)

Sinfo2

Drop
(Process)

hsrc_y
(Process)

u_up
(Process)

v_up
(Process)

hsrcntrl
(Process)

Yo_Info

Y1_Info

Yo_Data

Y1_Data

Uo_Info

U1_Info

Uo_Data

U1_Data

Vo_Info

V1_Info

Vo_Data

V1_Data

finfo_out

finfo_o

hsrc_u
(Process)

Uup_Info Uup_Data

hsrc_v
(Process)

Vup_Info Vup_Data

duplicate_y_uv
(Process)

hparams_yuv

u_down
(Process)

v_down
(Process)

hparams_y

duplicate_u_v
(Process)

hparams_uv

hparams_uhparams_v

Usrc_InfoUsrc_DataVsrc_Info Vsrc_Data

Figure 2.4: Dotty Output

44

Program 2.5.1 Dotty Output

#include "mynetwork.h"
#include "dotty.h"
#include <fstream>

main()
{

// create the network
MyNetwork nw(id("nw"));

// create output file nw.dot
std::ofstream f("nw.dot");

// print network in dotty format
printDotty(nw, f);

}

After creating the .dot file by running the program, the graphviz tools can be used
to visualize the .dot file. The program dotty can be used to view the graph via the
X environment, or the program dot can be used to convert the graph into postscript
format, with the following command:

dot -Tps nw.dot -o nw.ps

For output in other formats we refer to the graphviz manual pages.

2.5.3 Options

The YAPI to dotty conversion has various options to control the formatting of the
graph. These options are specified via a configuration file named dotty.cfg that
must be present in the current directory or in your home directory. The configura-
tion file is a text file in which the options are specified as name = value pairs.
Below, the default option settings are listed.

45

Program 2.5.2 Default Option Settings

InitLevel = 10
PageSize = A4p
Ratio = fill
Fifo = false
Decorate = false

ProcessNetworkColor = white
ProcessColor = white
PortColor = white
FifoColor = white

ProcessNetworkClusterFontColor = black
ProcessNetworkFontColor = black
ProcessFontColor = black
PortFontColor = black
FifoFontColor = black

ProcessNetworkClusterFontName = Helvetica
ProcessNetworkFontName = Helvetica
ProcessFontName = Helvetica
PortFontName = Helvetica
FifoFontName = Helvetica

ProcessNetworkClusterFontSize = 20
ProcessNetworkFontSize = 16
ProcessFontSize = 16
PortFontSize = 16
FifoFontSize = 16

The options can be chosen from the following values:

� InitLevel: integer.
The number of hierarchical levels that is shown. When set to 1, only the top
level prosess network is shown, and all sub-networks are shown as simple
nodes. When set to 2, the contents of the top level network and its sub-
networks are shown.

� PageSize: A4p, A4l, A3p, A3l, A2p, A2l, A1p, A1l, A0p or A0l.
Specifies the page size and orientation. For example, A4p represents A4
portrait, A2l represents A2 landscape, etc.

� Ratio: fill, compress, or auto.
Fill stretches the drawing, whereas compress compresses the drawing to fit
it in the given pagesize.

� Fifo: true, or false.

46

If set to true, fifos are shown as diamond-shaped nodes, otherwise as normal
edges.

� Decorate: true, or false.
If set to true, a line is drawn that connects the fifo label with the edges. These
lines are only visible in the postscript output, not in X (dotty).

� Color: white, lavender, gray, black, red, pink, brown, beige, orange, yellow,
gold, green, cyan, blue, navy, magenta, purple, or violet.

� Font: Times-Roman, Helvetica, or Courier.

47

2.6 Programming Guidelines

2.6.1 Coding Style

Processes

The preferred coding style for the definition of process types is indicated in the
template listed below. This template is also part of the release in the subdirectory
containing the examples. The template for user-defined processes is listed in the
files myprocess.h and myprocess.cc. A user-defined process consists of
a public part, that is accessible to the environment of a process instance, and of
a private part, that is only accessible to the process instances themselves. The
public part consists of four consecutive sections, namely constructors, destructor,
the type member function, and the main member function. The private part consists
of four consecutive sections, namely input ports, output ports, member functions,
and member variables.

48

Program 2.6.1 Process Template

class MyProcess : public Process
{
public:

// constructors
MyProcess(const Id& n, In<int>& i,

Out<int>& o, int x);

// destructor
˜MyProcess();

// type member function
const char* type() const;

// main member function
void main();

private:
// input ports
InPort<int> in;

// output ports
OutPort<int> out;

// member functions
int f(int);

// member variables
int a;

};

The constructor section contains one or more constructors. Each constructor has
one or more arguments. The first argument is an instance name that is given when
the programmer instantiates a process. The next arguments are optional; they are
inputs, outputs, and parameters, respectively. More specically, the subsequent zero
or more arguments are inputs that are bound to the input ports. The number, the
type, and the order of inputs must correspond to the number, the type, and the
order of input ports in the input port section. The next zero or more arguments are
outputs that are bound to the output ports. The number, the type, and the order of
outputs must correspond to the number, the type, and the order of output ports in
the output port section. The final zero or more arguments are parameters that are
used to initialize the member variables of the member variable section.

The destructor section contains an optional destructor. The purpose of the destruc-
tor is to deinitialize the member variables and to deallocate memory that has been
allocated in the constructor. The type member function section contains one func-
tion that must return the type of the process, i.e., the class name which is in this

49

case “MyProcess”. The input port section contains zero or more input ports. The
number, the type, and the order must correspond to those of the inputs in the con-
structors. The output port section contains zero or more output ports. The number,
the type, and the order must correspond to those of the outputs in the constructors.
The member function section contains zero or more functions which can be called
from the main function. The member variable section contains zero or more mem-
ber variables that can be accessed by the member functions including the main
function.

The initialization of process instances is done in a constructor of the corresponding
process type. The constructor of a process type contains a member initialization
section and a member assignment section. The member assignment section may
be used to assign a value to the member variables that are not initialized via the
initializer list. The constructor cannot contain calls to member functions.

Program 2.6.2 Process Constructor Template

MyProcess::MyProcess(const Id& n, In<int>& i,
Out<int>& o, int x) :

// member initialization
Process(n),
in(id("in"), i),
out(id("out"), o)

{
// member assignment
a = x;

}

The initialization list passes the instance name of the user-defined process to the
predefined base class Process. Furthermore the list initializes the input ports and
output ports. To this end one must supply instance names as well as the binding of
the ports to the inputs and outputs.

The functionality of a process type is defined in the main member function. Each
process instance executes the main member function using its own state space, i.e.,
each process instance has its own program counter, its own memory space con-
taining the variables as defined in the process type, its own ports, etcetera. The
functionality in the main member function as well as the other member functions
is described in terms of regular C or C++ constructs and the predefined YAPI func-
tions read, write and select. Variables that are used in only one member function
of a process type have to be declared locally in the scope of the specific member
function. Variables that are used in more than one member function and that are
not passed as arguments of the member functions have to be declared as member
variables. It is important to note that one must not declare global or static variables

50

other than constants because these variables are shared by all process instances of
a process type. Consequently, all process instances operate in parallel on the same
global or static variable which will result in unpredictable behavior because the
accesses on this variable are not synchronized.

Process Networks

The preferred coding style for the definition of process network types is indicated
in the template listed below. This template is also part of the release in the subdi-
rectory containing the examples. The template for user-defined process networks
is listed in the files mynetwork.h and mynetwork.cc. A user-defined process
network consists of a public part, that is accessible to the environment of a process
network instance, and of a private part, that is only accessible to the process net-
work instances themselves. The public part consists of two consecutive sections,
namely constructors and the type member function. The private part consists of
five consecutive sections, namely input ports, output ports, fifos, processes, and
process networks.

Program 2.6.3 Process Network Template

class MyNetwork : public ProcessNetwork
{
public:

// constructors
MyNetwork(const Id& n, In<int>& i,

Out<int>& o, int x);

// type member function
const char* type() const;

private:
// input ports
InPort<int> in;

// output ports
OutPort<int> out;

// fifos
Fifo<int> fifo;

// processes
MyProcess myprocess;

// process networks
MyOtherNetwork mynetwork;

};

51

The constructor section is the same as the constructor section of processes. It con-
tains one or more constructors. Each constructor has one or more arguments. The
first argument is an instance name that is given when the programmer instantiates a
process network. The next arguments are inputs, outputs, and parameters, respec-
tively. More specifically, the subsequent zero or more arguments are inputs that are
bound to the input ports. The number, the type, and the order of inputs must corre-
spond to the number, the type, and the order of input ports in the input port section.
The next zero or more arguments are outputs that are bound to the output ports.
The number, the type, and the order of outputs must correspond to the number, the
type, and the order of output ports in the output port section. The final zero or more
arguments are parameters that are passed to processes and process networks in the
process and process network sections, respectively.

The type member function section contains one function that must return the type
of the process network, i.e., the class name which is in this case “MyNetwork”.
The input port section contains one or more input ports. The number, the type, and
the order must correspond to those of the inputs in the constructors. The output
port section contains one or more output ports. The number, the type, and the
order must correspond to those of the outputs in the constructors. The fifo section
contains zero or more fifos. The process section contains zero or more processes.
The process network section contains zero or more process networks.

The initialization of process network instances is done in a constructor of the cor-
responding process network type. The constructor of a process network type only
contains a member initialization section. The member assignment section is ob-
solete because process network types only contain member variables that have a
constructor.

Program 2.6.4 Process Network Constructor Template

MyNetwork::MyNetwork(const Id& n, In<int>& i,
Out<int>& o, int x) :

// member initialization
ProcessNetwork(n),
in(id("in"), i),
out(id("out"), o),
fifo(id("fifo")),
myprocess(id("myprocess"), in, fifo, x),
mynetwork(id("mynetwork"), fifo, out)

{ }

The initialization list passes the instance name of the user-defined process network
to the predefined base class ProcessNetwork. Furthermore the list initializes
the input ports, output ports, fifos, processes, and process networks. To this end

52

one must supply instance names, the binding of the ports to the inputs and outputs,
and the binding of processes and process networks to the ports and fifos. Note that
it is not allowed to pass the inputs and outputs directly to the processes and process
networks.

2.6.2 Design Rules

In this section we present design rules to develop reusable YAPI applications. By
reuse we mean two things. Firstly, to reuse applications in the design of alternative
applications. Secondly, to reuse applications in the design of alternative architec-
tures. To illustrate these design rules we use examples from VYA (Video YAPI)
[23], which is a set of design rules for applying YAPI to model video applications.

Rule 1. Introduce functional data types

The introduction of functional data types improves reusability because it makes
data types explicit. As an example we mention the data type VYApixel that is
used to represent R, G, and B as well as Y, U, and V values. One advantage is that
this data type abstracts from the representation of these values in an implementa-
tion, which can be for instance int or short. Another advantage is that it is clear
what data type is used such that type checking at compile-time is feasible. For ex-
ample, the data types VYAlineLength and VYAimageWidth are both defined
as unsigned int, but the former is associated with lines while the latter is asso-
ciated with images. Hence, functional data types are important, especially for the
definition of the interfaces of processes to increase their reusability in alternative
applications.

Rule 2. Minimize latency

The latency of a process is the difference between the number of values that it has
read and the number of values that it has written. In general each output value func-
tionally depends on one or more input values, such that these input values need to
be read before the output value can be computed and written. By reading the input
values as late as possible, i.e., only when you need them, and by writing the output
values as soon as possible, i.e., immediately after you compute them, the number
of living values in the process is minimal. This minimizes the memory require-
ments of the process and of its environment (i.e., the fifos of the process network)
if its output needs to be synchronized with other streams. Here synchronization
means to match the latency of the process and the latency of the other streams by
storing these streams in fifos. By minimizing the latency of the processes also the
fifo sizes that are minimally needed to avoid deadlock are reduced. This increases
the reusability of the process in alternative applications.

53

Producer

Filter
with

latency x

Fifo

Consumer

Figure 2.5: The relation between process latencies and fifo sizes.

To illustrate the relation between latency and fifo sizes we take the example of
Figure 2.5. We assume that the producer alternatingly writes one value to its two
ports. Similarly the consumer alternatingly reads one value from its two ports. We
assume that they both start with the upper port. Due to latency ' of the filter, the
first read action of the consumer cannot be completed until the producer has written
' values to its upper port. Hence, the fifo between the producer and the consumer
must be able to store at least ' � � values to prevent deadlock.

Rule 3. Use vector operations

Vector operations have been introduced to efficiently support the reading and writ-
ing of composite data types. Suppose for example that we have a process that
internally has a data type for video lines which is composed out of video pixels. In
VYA this would typically be written as follows

typedef Line VYApixel[n];

where variable n is of type VYAlineLength, which is defined as unsigned
int. The value of a variable line of type Line can be read using vector op-
eration read(in, line, n) or written using vector operation write(out,
line, n) in a single operation. Hence, the vector operations abstract from how
the video line is communicated in the implementation. The implementation can
communicate the line pixel by pixel, in groups of pixels, or in its entirety. So the
abstraction provides more implementation freedom which increases the reusabilty
in alternative architectures.

Rule 4. Avoid “resource” sharing

Ports, fifos, processes, and process networks are functional entities, they are not
resources. Therefore, they must not be shared for multiple purposes. As an ex-
ample we mention the interface of VYA processes and process networks which
always have separate ports for Y, U, and V values of type VYApixel. In 4:2:2
format these streams are often multiplexed in one YUYV stream, but this is a de-

54

sign choice which must be made explicit in a mapping step if one maps the three
YAPI ports for Y, U, and V, onto a single port in the architecture.

Another example of “resource” sharing is RGB to YUV conversion and vice versa.
Although the functions for both cases might be quite similar apart from the coeffi-
cients, the interfaces for both cases are different. For RGB to YUV conversion we
have R, G, and B inputs and Y, U, and V outputs. For YUV to RGB we have Y, U,
and V inputs and R, G, and B outputs. Do not try to model these two functions in
a single process because the resulting process is not reusable for others that need
only one of the two functions. Moreover, the resulting process lacks the concur-
rency that two separate processes would have had. If one uses both processes in
the same process network, then it is possible in the mapping step to map both pro-
cesses onto a single processor mutually exclusive in time. One should not attempt
to model this design decision in YAPI.

55

2.7 Reference

2.7.1 Function read

Program 2.7.1 Read

template<class T>
void read(InPort<T>& s, T& t)

template<class T>
void read(InPort<T>& s, T* p, unsigned int n)

The function read (in file port.h) is an overloaded template function that con-
sumes data from a given input port and stores this data in a given variable. The
type of the input port must match with the type of the variable. This means that
either both types are identical, or the variable is an array of the type of the input
port. In the latter case one must provide a third argument to the read function which
indicates the number of elements to be read.

2.7.2 Function write

Program 2.7.2 Write

template<class T>
void write(OutPort<T>& s, const T& t)

template<class T>
void write(OutPort<T>& s, const T* p, unsigned int n)

The function write (in file port.h) is an overloaded template function that
copies1 data contained in a given variable to a given output port. The type of the
output port must match with the type of the variable. This means that either both
types are identical, or the variable is an array of the type of the output port. In the
latter case one must provide a third argument to the write function which indicates
the number of elements to be written.

1A shallow copy is made, i.e. if the type to be copied is a struct containing pointers, only the
struct is copied, not data that is pointed to.

56

2.7.3 Function select

Program 2.7.3 Select

inline unsigned int select(SelectList& l);

template<class T0,class T1>
unsigned int select(InPort<T0>& p0, InPort<T1>& p1)

template<class T0,class T1>
unsigned int select(InPort<T0>& p0, OutPort<T1>& p1)

template<class T0,class T1>
unsigned int select(OutPort<T0>& p0, OutPort<T1>& p1)

template<class T0,class T1>
unsigned int select(InPort<T0>& p0, unsigned int n0,

InPort<T1>& p1, unsigned int n1)

template<class T0,class T1>
unsigned int select(InPort<T0>& p0, unsigned int n0,

OutPort<T1>& p1, unsigned int n1)

template<class T0,class T1>
unsigned int select(OutPort<T0>& p0, unsigned int n0,

OutPort<T1>& p1, unsigned int n1)

The function select (in file select.h) is an overloaded template function that
selects one of the given ports that is able to communicate the given requested num-
ber of tokens. The default value for the number of tokens is one. An input port can
be selected if and only if it holds that the requested number of tokens is smaller
than or equal to the number of tokens that the corresponding output port has com-
mitted to produce plus the number of tokens in the fifo. An output port can be
selected if and only if it holds that the requested number of tokens is smaller than
or equal to the number of tokens that the corresponding input port has committed
to consume minus the number of tokens in the fifo.

To save space we have restricted the listed select operations to those that have two
ports as arguments. YAPI also supports three and four ports as arguments. From
YAPI Release 1.1 a select can be performed on a SelectList class that can hold an
arbitrary number of ports. This is useful when a select on more than four ports is
needed. For more details on SelectList see Section 2.7.13.

57

2.7.4 Class Id

Program 2.7.4 Id (id.h)

class IdBase
{
public:

IdBase(const IdBase& i);
IdBase(const char* n, IdBase* p);
virtual ˜IdBase();

IdBase& operator+(char c);
IdBase& operator+(const char* str);
IdBase& operator=(const IdBase& i);

IdBase* parent() const;
const char* name() const;
const char* fullName(char* buf=0) const;

operator const char*() const;

IdBase id(const char* n);

private:
char* nm; // name
IdBase* pa; // parent

};

class Id: public IdBase
{
public:

Id(const char*, Id*);
Id(const IdBase&);
˜Id();

};

Id id(const char*);

The class Id (in file Id.h) provides a public interface to the class IdBase. The
class IdBase is a base class of the classes ProcessNetwork,Process,Fifo
InPort, and OutPort, but due to private inheritance it is not accessible.

The class Id has two constructors. The copy constructor of class Id is used to set
the Id of member objects. In this case the member function id of class IdBase
is called to create the Id for member objects. The id member function returns an
IdBase with the given instance name and the object itself (this) as a parent. The

58

non-member function id is used to create an Id for the root process network. This
function returns an Id with the parent set to the null pointer. The constructor of
class Id with two arguments is used to set the Id of the root process network.

The member function parent returns the parent object, represented by a pointer
to an IdBase. The member function name returns the instance name of the object,
represented as a null-terminated character string. The member function fullName
returns the path name of the object within the network hierarchy. The full name
is a null-terminated character string consisting of a concatenation of the names of
all objects in the path, starting from the root object. The names in the path are
separated by dots. If the function fullName is provided with the null pointer
(default argument), the result will be placed in an internal static area, which will
be preserved until the next call of fullName. Otherwise the result will be stored
in the given array of characters. Finally, operator functions + and = are available.

2.7.5 Class In<T>

Program 2.7.5 In (io.h)

template<class T>
class In
{
public:

virtual void read(T& value) = 0;
virtual void read(T* p, unsigned int n) = 0;

virtual Connector* connector() = 0;
};

The abstract template class In<T> (in file io.h) is a base class for the classes
InPort<T> and Fifo<T> that provides a function read. The read function
implements the YAPI function read.

59

2.7.6 Class Out<T>

Program 2.7.6 Out (io.h)

template<class T>
class Out
{
public:

virtual void write(const T& value) = 0;
virtual void write(const T* p, unsigned int n) = 0;

virtual Connector* connector() = 0;
};

The abstract template class Out<T> (in file io.h) is a base class for the classes
OutPort<T> and Fifo<T> that provides a function write. The write function
implements the YAPI function write.

2.7.7 Class Fifo<T>

Program 2.7.7 Fifo (fifo.h)

template<class T>
class Fifo : private FifoImplT<T>,

public In<T>,
public Out<T>

{
public:

Fifo(const Id& n);
Fifo(const Id& n, unsigned int lo);
Fifo(const Id& n, unsigned int lo,

unsigned int hi);

void read(T& t);
void read(T* p, unsigned int n);

void write(const T& t);
void write(const T* p, unsigned int n);

Connector* connector();
};

The template class Fifo<T> (in file fifo.h) inherits from the classes In<T>,

60

and Out<t>. One can instantiate fifos of arbitrary types. At the time of instan-
tiation one must provide an instance name, and optionally a minimum size, or a
minimum size and a maximum size.

The fifo size has to be specified in terms of the number of elements of the fifo type.
The fifo size times the number of bytes that is required to represent the fifo type
gives the memory requirements in bytes. The run-time environment instantiates a
fifo which has a size between the minimum and maximum size. If the maximum
size is not given then it is assumed that the fifo size may be arbitrarily large. If, in
addition, the minimum size is not given then it is assumed that the fifo size may be
an arbitrarily small non-negative integer.

The minimum size is required to prevent deadlock in the application. The maxi-
mum size is required to cause deadlock in the application in order to analyze the
occurrence of deadlock. The programmer can set the exact fifo size by setting both
the minimum and maximum size to the desired size. Once the programmer has
analyzed the deadlock behavior, it is a good programming practice to specify the
minimum size to prevent deadlock and omit the maximum size to allow maximum
implementation freedom.

The member function connector returns a this pointer, since Connector is
a base class of class Fifo<T>.

2.7.8 Class InPort<T>

Program 2.7.8 InPort (port.h)

template<class T>
class InPort : public InPortImplT<T>, public In<T>
{
public:

InPort(const Id& n, In<T>& i);

void read(T& value);
void read(T* p, unsigned int n);

};

The template class InPort<T> (in the file port.h) inherits from the class IdBase
(via the subclass InPortImpT<T>), and In<T>. It inherits the function read
which is called by the YAPI function read. One can instantiate input ports of arbi-
trary types in order to define the interface of a process. At the time of instantiation
one must provide either a fifo or an input port of the encapsulating process network.

61

The functions name and fullname are also available. The function name returns
the instance name of the InPort and the function fullname returns the path name
of the InPort within the network hierarchy..

2.7.9 Class OutPort<T>

Program 2.7.9 OutPort (port.h)

template<class T>
class OutPort : public OutPortImplT<T>, public Out<T>
{
public:

OutPort(const Id& n, Out<T>& o);

void write(const T& value);
void write(const T* p, unsigned int n);

};

The template class OutPort<T> (in file port.h) inherits from the class IdBase
(via the subclass OutPortImpT<T>) and Out<T>. It inherits the function write
which is called by the YAPI function write. One can instantiate output ports of
arbitrary types in order to define the interface of a process. At the time of instanti-
ation one must provide either a fifo or an output port of the encapsulating process
network.

The functions name and fullname are also available. The function name returns
the instance name of the OutPort and the function fullname returns the path
name of the OutPort within the network hierarchy..

62

2.7.10 Class Process

Program 2.7.10 Process (process.h)

class Process : private ProcessImpl
{
public:

Process(const Id& n);

protected:
Id id(const char*);
const char* name() const;
const char* fullName() const;
virtual const char* type() const = 0;

virtual void main() = 0;
void execute(const char* i);

};

The class Process (in file process.h) is a base class for user-defined process
types. The class inherits from the class IdBase via the subclass ProcessImpl.
The member functions id, name, and fullName make the corresponding mem-
ber functions of the class IdBase accessible to the class Process and its sub-
classes. At the time of instantiation one must provide an instance name.

Furthermore, subclasses of Process must define a function type that must re-
turn the name of the subclass. In addition, they must define a function main that
contains the functionality of the process type. A user-defined process type has in-
put and output ports through which it communicates. The main function can read
from the input ports via the function read and it can write to the output ports via
the function write. To measure the computation workload, the main function of
processes can be annotated with execute statements. An execute statement is a call
of the protected member function execute. The argument of the execute state-
ment is a symbolic instruction that represents the workload that is associated with
a certain code fragment.

63

2.7.11 Class ProcessNetwork

Program 2.7.11 ProcessNetwork (network.h)

class ProcessNetwork : private NetworkImpl
{
public:

ProcessNetwork(const Id& n);

protected:
Id id(const char*);
virtual const char* type() const = 0;

};

The Class ProcessNetwork (in file network.h) is a base class for user-
defined process network types. The class inherits from the class IdBase via the
subclass NetworkImpl. The member function id makes the member function
id of the class IdBase accessible to the class ProcessNetwork and its sub-
classes. At the time of instantiation one must provide an instance name. Subclasses
of ProcessNetworkmust define a function type that must return the name of
the subclass.

A user-defined process network has input and output ports through which it com-
municates. Furthermore, it has a number of internal fifos, processes, and process
networks. The fifos are bound to the input and output ports of the internal processes
and the internal process networks, and to the input and output ports of the process
network itself.

64

2.7.12 Class RTE

Program 2.7.12 RTE (apiRte.h)

class RTE
{
public:

RTE () { r = ::newRte();};
˜RTE () { delete r;};

void start (ProcessNetwork& n);

void setOutStream(std::ostream& o);
void setErrorStream(std::ostream& e);
std::ostream& getOutStream();
std::ostream& getErrorStream();

private:
Rte* r;

};

The class RTE is derived from a specific run time environment that controls the
execution of the yapi network. The execution is started by calling the start function
of this class. Furthermore the user can change the direction of the info and error
messages by setting the out and error stream. By default these streams are directed
to cout and cerr.

65

2.7.13 Class SelectList

Program 2.7.13 SelectList (select.h)

class SelectList : private SelectImpl
{
public:

SelectList (const Id& n);

template<class T>
void pushBack(const InPort<T>& p,

unsigned int n=1);
inline void pushBack(const InPortImpl& p,

unsigned int n=1);

template<class T>
void pushBack(const OutPort<T>& p,

unsigned int n=1);
inline void pushBack(const OutPortImpl& p,

unsigned int n=1);

inline unsigned int select ();
};

The class SelectList is a container class for ports that can be used as argument
for the select function, as described in the function select section. The
return value of the select member function is an index that indicates which port is
selected. The ports in the SelectList container are ordened. The first port that is
pushed on the list with the pushBack member function referenced with index 0.
The next port that is pushed on the list with the pushBack is referenced with index
one, etc. At least one port must be pushed on the list before the select member is
called, otherwise the behaviour of the select call is undefined.

2.7.14 Function start

Program 2.7.14 Start (baseRte.h)

void start(const ProcessNetwork& n);

Note, this function has become obsolete. The member function start of class
RTE (in file apiRte.h) is preferred.

The function start (in file baseRte.h) is used to start the execution of the

66

instantiated process network. The function start starts all processes of the spec-
ified process network, and then waits until they have terminated or blocked. A
process terminates when it reaches the end of main. One cannot explicitly start,
stop, suspend, or resume individual processes. Process control can only be done
via reads and writes on input and output channels.

2.7.15 Function printWorkload

Program 2.7.15 Workload (workload.h)

void printWorkload(const ProcessNetwork& n,
std::ostream& o = std::cout);

void printComputationWorkload(
const ProcessNetwork& n,
std::ostream& o = std::cout);

void printCommunicationWorkload(
const ProcessNetwork& n,
std::ostream& o = std::cout);

After the execution of the process network the computation workload and the
communication workload can be printed with the functions printWorkload,
printComputationWorkloadand printCommunicationWorkload (in
file workload.h), respectively.

2.7.16 Function printDotty

Program 2.7.16 Dotty (dotty.h)

void printDotty(const ProcessNetwork& n,
std::ostream& o = std::cout,
std::ostream& e = std::cerr);

After the declaration of a process network its structure can be visualized with the
function printDotty.

67

2.8 How to Compile Your Application

To compile your application program, you can make use of the template makefile
shown below. This is the makefile for the producer-consumer example. Change
the variable YAPIROOT to the directory where you installed YAPI, and change the
variable OBJS according to your sources.

Program 2.8.1 Makefile

YAPI = $(YAPIROOT)

INCLUDES = -I$(YAPI)/include
LIBS = $(YAPIROOT)/lib/libyapi.a

CXX = g++
CXXFLAGS = -g -O $(INCLUDES)

OBJS = consumer.o \
producer.o \
pc.o \
main.o

EXE = ./run.exe

all: $(EXE)

test: $(EXE)
@$(EXE)

$(EXE): $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) $(LIBS) -o $(EXE)

clean:; rm -rf $(OBJS) $(EXE)

68

Bibliography

[1] F. Balarin et al., Hw.-sw. co-design of embedded systems: the Polis ap-
proach, Kluwer, 1997.

[2] J.T. Buck, Static scheduling of code generation from dynamic dataflow
graphs with integer valued control signals, Asilomar Conf. on Signals,
Systems and Computers, 508-513, 1994.

[3] W. Chang, S. Ha and E.A. Lee, Heterogeneous Simulation - Mixing
Discrete-Event Models with Dataflow, Journal of VLSI Processing 15,
127-144, 1997.

[4] T. Grötker, R. Schoenen and H. Meyr, PCC: A Modeling Technique for
Mixed Control/Data Flow Systems, European Design & Test Conf., 482-
486, 1997.

[5] Mentor Graphics, DSP Station User’s Manual, San Jose, CA 95131,
USA.

[6] F. Boussinot and R. de Simone, The Esterel Language, Proc. IEEE 79,
1293-1304, 1991.

[7] E.A. Lee and D.G. Messerschmidt, Synchronous data flow, Proc. IEEE
75, 1235-1245, 1987.

[8] A.J. Martin, An axiomatic definition of synchronization primitives, Acta
Informatica 16, 219-235, 1981.

[9] A.J. Martin, The Probe: An Addition to Communication Primitives, In-
formation Processing Letters 20, 125-130, 1985.

[10] J.T. Buck et al., A platform for heterogeneous simulation and prototyp-
ing, Proc. 1991 European Simulation Conf., 1991.

[11] Cadence Design Systems, SPW User’s Manual, Foster City, CA 94404,
USA.

69

[12] M. von der Beeck, A comparison of statecharts variants, Proc. Formal
Techniques in Real Time and Fault Tolerant Systems, 128-148, 1994.

[13] A.J. Martin, Programming in VLSI: From Communicating Processes to
Delay-Insensitive Circuits, Developments in Concurrency and Commu-
nication, C.A.R. Hoare (ed.), Addison-Wesley, 1990.

[14] G. Bilsen et al., Static scheduling of multi-rate cyclo-static DSP applica-
tions, Proc. Workshop on VLSI Signal Processing, 137-146, 1994.

[15] E.A. Lee and T.M. Parks, Dataflow process networks, Proc. IEEE 83,
773-801, 1995

[16] Gilles Kahn, The Semantics of a Simple Language for Parallel Program-
ming, Proc. of the IFIP Congress 74, North-Holland Publishing Co, 1974.

[17] C.A.R. Hoare, Communicating Sequential Processes, Communications
of the ACM 21, 666-677, 1978.

[18] Bart Kienhuis, Ed Deprettere, Kees Vissers, Pieter van der Wolf, An Ap-
proach for Quantitative Analysis Of Application-Specific Dataflow Ar-
chitectures, ASAP’97, July 14-16, 1997.

[19] Stanley B. Lippman, C++ Primer, � nd Edition, Addison Wesley, 1991.

[20] Pieter van der Wolf, Paul Lieverse, Mudit Goel, David La Hei, Kees Vis-
sers, An MPEG-2 Decoder Case Study as a Driver for a System Level
Design Methodology, in Proc. CODES’99.

[21] Pieter Struik, SLAM User Manual, version 2.0, Software TV Doc. No.
098, Oct 1, 1996.

[22] Jean-Yves Brunel, Erwin de Kock, Wido Kruijtzer, Arjan Kenter, Wim
Smits, Communication Refinement in Video Systems on Chip, in Proc.
CODES’99.

[23] Kees van Zon, VYA: Applying YAPI to Video, Philips Research USA -
TN-2000-025, 2000.

70

Index

71

Index

coding style, 48
communication, 27
communication workload, 41
compile, 68
computation workload, 41
core dump, 40
CSP, 8

deadlock, 32, 34, 35
debug, 35
dotty, 43

execute, 41, 63

Fifo, 27, 60
fifo size, 32
fifo status, 37
fifo type, 27
fullName, 26, 59

getting started, 17

hierarchy, 24

Id, 25, 58
id function, 26
identification, 25
In, 59
InPort, 61

Kahn, 7

main, 63
makefile, 68
model of computation, 12
multicast, 33, 34

name, 26, 59

non-determinism, 29

Out, 60
OutPort, 62

parent, 26, 59
postscript, 43
printCommunicationWorkload, 41, 67
printComputationWorkload, 41, 67
printDotty, 67
printWorkload, 67
Process, 63
ProcessNetwork, 64
Producer-Consumer, 17

read, 27, 56
RTE, 65
run-time environment, 35

scalar, 27, 30
scheduling, 32
select, 30, 34, 57
SelectList, 66
stack overflow, 39
start, 38, 39, 66

termination, 39

vector, 27, 30
vector read, 27
vector write, 27

workload, 34, 41
write, 27, 56

YAPI, 1

72

